首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
  国内免费   31篇
安全科学   2篇
废物处理   3篇
环保管理   5篇
综合类   32篇
基础理论   18篇
污染及防治   19篇
评价与监测   4篇
  2023年   7篇
  2022年   8篇
  2021年   11篇
  2020年   6篇
  2019年   6篇
  2018年   9篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   5篇
  2012年   5篇
  2011年   11篇
  2010年   2篇
  2009年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
61.
Yu XY  Mu CL  Gu C  Liu C  Liu XJ 《Chemosphere》2011,85(8):1284-1289
Pyrolysis of vegetative biomass into biochar and application of the more stable form of carbon to soil have been shown to be effective in reducing the emission of greenhouse gases, improving soil fertility, and sequestering soil contaminants. However, there is still lack of information about the impact of biochar amendment in agricultural soils on the sorption and environmental fate of pesticides. In this study, we investigated the sorption and dissipation of a neonicotinoid insecticide acetamiprid in three typical Chinese agricultural soils, which were amended by a red gum wood (Eucalyptus spp.) derived biochar. Our results showed that the amendment of biochar (0.5% (w/w)) to the soils could significantly increase the sorption of acetamiprid, but the magnitudes of enhancement were varied. Contributions of 0.5% newly-added biochar to the overall sorption of acetamiprid were 52.3%, 27.4% and 11.6% for red soil, paddy soil and black soil, respectively. The dissipation of acetamiprid in soils amended with biochar was retarded compared to that in soils without biochar amendment. Similar to the sorption experiment, in soil with higher content of organic matter, the retardation of biochar on the dissipation of acetamiprid was lower than that with lower content of organic matter. The different effects of biochar in agricultural soils may attribute to the interaction of soil components with biochar, which would block the pore or compete for binding site of biochar. Aging effect of biochar application in agricultural soils and field experiments need to be further investigated.  相似文献   
62.
Biochar(BC) and rhamnolipid(RL) is used in bioremediation of petroleum hydrocarbons,however, the combined effect of BC and RL in phytoremediation has not been studied until now. In this paper, the phytoremediation of petroleum hydrocarbon-contaminated soil using novel plant Spartina anglica was enhanced by the combination of biochar(BC) and rhamnolipid(RL). Samples of petroleum-contaminated soil(10, 30 and 50 g/kg) were amended by BC, BC+ RL and rhamnolipid modified biochar(RMB), respectively. After 60 day's cultivation, the removal rate of total petroleum hydrocarbons(TPHs) for unplanted soil(UP), planted soil(P), planted soil with BC addition(P-BC), planted soil with BC and RL addition(P-BC + RL) and planted soil with addition of RMB(P-RMB) were 8.6%, 19.1%, 27.7%,32.4% and 35.1% in soil with TPHs concentration of 30 g/kg, respectively. Compared with UP,the plantation of Spartina anglica significantly decreased the concentration of C_(8–14) and tricyclic PAHs. Furthermore, the application of BC and RMB alleviated the toxicity of petroleum hydrocarbons to Spartina anglica via improving plant growth with increasing plant height, root vitality and total chlorophyll content. High-throughput sequencing result indicated that rhizosphere microbial community of Spartina anglica was regulated by the application of BC and RMB, with increase of bacteria and plant mycorrhizal symbiotic fungus in biochar and RMB amended soil.  相似文献   
63.
Heavy metal pollution affects soil ecological function. Biochar and compost can effectively remediate heavy metals and increase soil nutrients. The effects and mechanisms of biochar and compost amendments on soil nitrogen cycle function in heavy-metal contaminated soils are not fully understood. This study examined how biochar, compost, and their integrated use affected ammonia-oxidizing microorganisms in heavy metal polluted soil. Quantitative PCR was used to determine the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB). Ammonia monooxygenase (AMO) activity was evaluated by the enzyme-linked immunosorbent assay. Results showed that compost rather than biochar improved nitrogen conversion in soil. Biochar, compost, or their integrated application significantly reduced the effective Zn and Cd speciation. Adding compost obviously increased As and Cu effective speciation, bacterial 16S rRNA abundance, and AMO activity. AOB, stimulated by compost addition, was significantly more abundant than AOA throughout remediation. Correlation analysis showed that AOB abundance positively correlated with NO3?-N (r = 0.830, P < 0.01), and that AMO activity had significant correlation with EC (r = -0.908, P < 0.01) and water-soluble carbon (r = -0.868, P < 0.01). Those seem to be the most vital factors affecting AOB community and their function in heavy metal-polluted soil remediated by biochar and compost.  相似文献   
64.
Transforming to biochar provides an environmentally friendly approach for crop residue reutilization, which are usually applied as sorbent for heavy metal removal. As typical siliconrich material, the specific sorptive mechanisms of rice straw derived biochar(RSBC) are concerned, especially at the low concentration range which is more environmentally relevant. In the present study, Cd sorption onto RSBCs at the concentration of ≤ 5 mg/L was investigated. The sorptive capacity was positively corr...  相似文献   
65.
The combined pollution of heavy metals is ubiquitous worldwide. Mn/Al-layered double oxide-loaded crab shells biochar (LDO/BC) was prepared, so as to remediate the combined pollution of Cd and Cu in soil and water. The pristine and used LDO/BC were characterized and the results revealed that the layered double oxide was successfully loaded on crab shells biochar (BC) and metal element Ca in crab shells was beneficial to the formation of more regular layered and flake structure. The maximal adsorption capacity (Qm) of LDO/BC for aqueous Cu2+ and Cd2+ was 66.23 and 73.47 mg/g, respectively. LDO/BC and BC were used to remediate e-waste-contaminated soil for the first time and exhibited highly efficient performance. The extraction amount of Cu and Cd in the contaminated soil by diethylene triamine penta-acetic acid (DTPA) after treating with 5% LDO/BC was significantly reduced from 819.84 to 205.95 mg/kg (with passivation rate 74.8%) and 8.46 to 4.16 mg/kg (with passivation rate 50.8%), respectively, inferring that the bioavailability of heavy metals declined remarkably. The experimental result also suggested that after remediation by LDO/BC the exchangeable and weak acid soluble Cu and Cd in soil translated to reducible, residual and oxidizable fraction which are more stable state. Precipitation, complexation and ion exchange were proposed as the possible mechanisms for Cd and Cu removal. In general, these experiment results indicate that LDO/BC can be a potentially effective reagent for remediation of heavy metal contaminated water and soil.  相似文献   
66.
Herein, we developed the invasive plant-derived biochar (IPB) functionalized with CaAl-LDH at five mass ratios using a physical mixture method, assessed their adsorption perform for Eu(III), and explored the relative mechanisms. Results show that the IPB successfully loaded CaAl-LDH in five composites and their Eu(III) sorption affinities were strongly affected by solution pH, contact time, temperature, and the mass ratio of LDH and IPB. All the sorpiton process for Eu(III) occurred on the heterogeneous surface of five composites and the boundary layer diffusion limited the chemical sorption rate. Interestingly, the CaAl-LDH/IPB composite with high ratio of IPB had higher sorption capacity than the one with high ratio of LDH due to larger porosity of the former. Three mechanisms containing ion exchange between Al and Eu ions, surface complexation with carboxyl- and oxygen-containing functional groups, and precipitation were involved in the Eu(III) sorption, but the dominant sorption mechanism for each CaAl-LDH/IPB composite differed with different mass ratio of CaAl-LDH and IPB. In composite with more IPB (e.g., CaAl-LDH/IPB-13), both ion exchange and surface complexes dominated the sorption process and the intensity of Eu3+ was identified with the one of Eu2O3. Whereas in composites with high LDH, ion exchange dominated the sorption and the intensity of Eu3+ was obviously higher than the one of Eu2O3. This research will provide a new perspective for the application of the LDH/biochar materials.  相似文献   
67.
Study of ciprofloxacin removal by biochar obtained from used tea leaves   总被引:1,自引:0,他引:1  
In this study,used tea leaves(UTLs) were pyrolyzed to obtain used tea-leaf biochar(UTC),and then the UTC was used as an adsorbent to remove ciprofloxacin(CIP) from aqueous solutions.Batch experiments were conducted to investigate the CIP adsorption performance and mechanism.The results showed that the CIP-adsorbing ability first increased and then declined as the UTC pyrolysis temperature increased.The UTC obtained at 450°C presented excellent CIP-absorbing ability at p H 6 and 40°C.The maximum monolayer adsorption capacity was 238.10 mg/g based on the Langmuir isotherm model.The pseudo-second-order kinetic equation agreed well with the CIP adsorption process,which was controlled by both external boundary layer diffusion and intra-particle diffusion.The characterization analysis revealed that the \OH groups,C_C bonds of aromatic rings,C\H groups in aromatic rings and phenolic C\O bonds play vital roles in the CIP adsorption process,and that the N\C,N\O,O\C_O and C\OH groups of UTC were consumed in large quantities.π–π interactions,hydrogen bonding and electrostatic attraction are inferred as the main adsorption mechanisms.The present work provides not only a feasible and promising approach for UTLs utilization but also a potential adsorbent material for removing high concentrations of CIP from aqueous solutions.  相似文献   
68.
Heavy metal soil contamination is being given more and more attention due to increasing threats of heavy metals to soil quality, ecological function and human health. Biochar application is an effective way to remove toxic metals due to its high efficiency and low price. Electrostatic adsorption is the primary adsorption mechanism. The absorption ability and stability of biochar is the key to its adsorption performance. The extent of the restoration efficiency is dependent on many factors. The biomass, pyrolysis temperature and application rate affect the number of binding sites. The ageing process and soil properties significantly affect the biochar stability. For long-term purposes, biochar derived from woody residues and pyrolysed at high temperatures is the best available material. In addition, the application of alkaline and electronegative biochar to clay-rich, acidic and As- or Cr-contaminated soil should to be treated with caution.  相似文献   
69.
Polydopamine/NZVI@biochar composite (PDA/NZVI@BC) with high removal efficiency of tetracycline (TC) in aqueous solutions was successfully synthesized. The resultant composite demonstrated high reactivity, excellent stability and reusability over the reaction course. Such excellent performance can be attributed to the presence of the huge surface area on biochar (BC), which could enhance NZVI dispersion and prolong its longevity. The carbonyl group contained on the surface of biochar could combine with the amino group on polydopamine(PDA). The hydroxyl groups in PDA is able to enhance the dispersion and loading of NZVI on BC. Being modified by PDA, the hydrophilicity of biochar was improved. Among BC, pristine NZVI and PDA/NZVI@BC, PDA/ NZVI@BC exhibited the highest activity for removal of TC. Compared with NZVI, the removal efficiency of TC could be increased by 55.9% by using PDA/NZVI@BC under the same conditions. The optimal modification time of PDA was 8h, and the ratio of NZVI to BC was 1:2. In addition, the possible degradation mechanism of TC was proposed, which was based on the analysis of degraded products by LC-MS. Different important factors impacting on TC removal (including mass ratio of NZVI to BC/PDA, initial concentration, pH value and the initial temperature of the solution) were investigated as well. Overall, this study provides a promising alternative material and environmental pollution management option for antibiotic wastewater treatment.
  相似文献   
70.
• Capacitive biochar was produced from sewage sludge. • Seawater was proved to be an alternative activation agent. • Minerals vaporization increased the surface area of biochar. • Molten salts acted as natural templates for the development of porous structure. Sewage sludge is a potential precursor for biochar production, but its effective utilization involves costly activation steps. To modify biochar properties while ensuring cost-effectiveness, we examined the feasibility of using seawater as an agent to activate biochar produced from sewage sludge. In our proof-of-concept study, seawater was proven to be an effective activation agent for biochar production, achieving a surface area of 480.3 m2/g with hierarchical porosity distribution. Benefited from our design, the catalytic effect of seawater increased not only the surface area but also the graphitization degree of biochar when comparing the pyrolysis of sewage sludge without seawater. This leads to seawater activated biochar electrodes with lower resistance, higher capacitance of 113.9 F/g comparing with control groups without seawater. Leveraging the global increase in the salinity of groundwater, especially in coastal areas, these findings provide an opportunity for recovering a valuable carbon resource from sludge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号