首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   854篇
  免费   64篇
  国内免费   302篇
安全科学   25篇
废物处理   12篇
环保管理   129篇
综合类   517篇
基础理论   216篇
污染及防治   182篇
评价与监测   92篇
社会与环境   43篇
灾害及防治   4篇
  2024年   1篇
  2023年   15篇
  2022年   20篇
  2021年   21篇
  2020年   22篇
  2019年   35篇
  2018年   24篇
  2017年   31篇
  2016年   46篇
  2015年   42篇
  2014年   52篇
  2013年   97篇
  2012年   56篇
  2011年   86篇
  2010年   58篇
  2009年   69篇
  2008年   68篇
  2007年   76篇
  2006年   62篇
  2005年   45篇
  2004年   46篇
  2003年   36篇
  2002年   30篇
  2001年   26篇
  2000年   27篇
  1999年   19篇
  1998年   13篇
  1997年   17篇
  1996年   12篇
  1995年   15篇
  1994年   11篇
  1993年   8篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   3篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1220条查询结果,搜索用时 225 毫秒
61.
A procedure to optimize the design of a Permeable Adsorptive Barrier (PAB) for the remediation of a contaminated aquifer is presented in this paper. A computer code, including different routines that describe the groundwater contaminant transport and the pollutant capture by adsorption in unsteady conditions over the barrier solid surface, has been developed. The complete characterization of the chemical–physical interactions between adsorbing solids and the contaminated water, required by the computer code, has been obtained by experimental measurements. A case study in which the procedure developed has been applied to a tetrachloroethylene (PCE)-contaminated aquifer near a solid waste landfill, in the district of Napoli (Italy), is also presented and the main dimensions of the barrier (length and width) have been evaluated. Model results show that PAB is effective for the remediation of a PCE-contaminated aquifer, since the concentration of PCE flowing out of the barrier is everywhere always lower than the concentration limit provided for in the Italian regulations on groundwater quality.  相似文献   
62.
63.
石油污染土壤的生物修复室内模拟实验研究   总被引:1,自引:0,他引:1  
在实验室模拟的条件下,利用从克拉玛依的石油污染土壤中筛选出的4株高效降解菌,以石油烃降解率、脱氢酶活性、呼吸强度、微生物量碳氮和土壤毒性作为评价指标,研究不加生物菌剂不翻耕、不加生物菌剂翻耕、加生物菌剂不翻耕、加生物菌剂翻耕、加固定化菌剂不翻耕和加固定化菌剂翻耕6种不同实验条件对石油污染土壤修复的效果。结果表明,在63 d的修复过程中,加固定化菌剂翻耕实验F组的石油去除率达到了78.7%,比不加生物菌剂不翻耕实验A组的石油去除率提高了49.5%。随着土壤毒性逐渐降低,玉米(Zea mays L.)和赤子爱胜蚓(Eisenia fetida)可以在F组土壤中良好的生长,达到了修复的效果。  相似文献   
64.
Cr(VI) is far more soluble and toxic than Cr(III). Sediment pore water was investigated in a river adjacent to the property of a large former tannery, into which Cr-contaminated effluent was discharged over a 55-year period, and where extremely high Cr concentrations have been found in the sediments. Dialysis cells, or peepers, were used to generate depth profiles of Cr concentration in sediment pore water. Samples were analyzed for total Cr using inductively coupled plasma-mass spectrometry (ICP-MS) and for Cr species using high performance liquid chromatography (HPLC)-ICP-MS. The results show an absence of Cr(VI) in all samples. Furthermore, incomplete recovery of Cr(VI) added to the samples collected at the locations with highest sediment Cr concentrations indicate strong reducing conditions at those locations, which are not conducive to the presence of Cr(VI).  相似文献   
65.
Two assays were designed to obtain information about the influence of redox potential variations on barium mobility and bioavailability in soil. One assay was undertaken in leaching columns, and the other was conducted in pots cultivated with rice (Oryza sativa) using soil samples collected from the surface of Gleysol in both assays. Three doses of barium (100,300 mg kg−1 and 3000 mg kg−1-soil dry weight) and two redox potential values (oxidizing and reducing) were evaluated. During the incubation period, the redox potential (Eh) was monitored in columns and pots until values of −250 mV were reached. After the incubation period, geochemical partitioning was conducted on the barium using the European Communities Bureau of Reference (BCR) method. Rainfall of 200 mm d−1 was simulated in the columns and in the planting of rice seedlings in the pots. The results of the geochemical partitioning demonstrated that the condition of reduction favors increased barium concentrations in the more labile chemical forms and decreased levels in the chemical forms related to oxides. The highest barium concentrations in leached extracts (3.36 mg L−1) were observed at the highest dose and condition of reduction at approximately five times above the drinking water standard. The high concentrations of barium in the soil did not affect plant dry matter production. The highest levels and accumulation of barium in roots, leaves, and grains of rice were found at the highest dose and condition of reduction. These results demonstrate that reduction leads to solubilization of barium sulfate, thereby favoring greater mobility and bioavailability of this element.  相似文献   
66.
Abstract

A traditional method to determine operator dermal exposure is to quantify the amount of pesticide coming into contact with specific body regions and then to integrate the deposition density values with the total body surface. It is known that extremely high deposition values may occur in the hand region; however, the source of contamination is generally assumed to be direct splash or contact with the pesticide container. One of the parameters affecting operator/pilot exposure could be the transfer of pesticide residue, particularly in the case of pesticides with a longer half‐life, from contaminated surfaces of spray equipment by direct contact over extended periods. If the rate of skin absorption of pesticide is readily known, the expected values of daily dose for an operator or pilot may significantly rise due to the extended contact period. This study produced field data on the surface contamination of spray equipment used for ground and aerial applications. If field data on precise work practice (time‐motion) observations are incorporated, it may be possible to estimate the potential exposure of operator/pilot due to hand contact with contaminated surfaces.  相似文献   
67.
Pot experiments were conducted to examine the effects of various fertilizers, as well as soil dilution treatments on the dynamics of soil-borne DDTs [sum of dichlorodiphenyltrichloroethane (DDT), chlorodiphenyldichloroethylene (DDE) and di- chlorodiphenyldichloroethane (DDD)] and hexachlorocyclohexanes (HCHs, sum of α-HCH, β-HCH, γ-HCH and δ-HCH) and their subsequent impacts on the uptake of DDTs and HCHs by a test plant. The results show that the soil residual DDTs and HCHs concentrations in the iron-rich fertilizer-treated soil were significantly lower than those in other fertilizer-treated soils. There was a close relationship between the soil residual DDTs and the plant tissue DDTs. This suggests that the uptake rate of DDTs by the plant was dependent on the concentration of soil-borne DDTs. A less close relationship between soil residual HCHs and plant tissue HCHs was also observed. Dilution of pesticide-contaminated soil with the non-contaminated soil not only physically reduced the concentration of pesticides in the soil but also enhanced the loss of soil-borne pesticides, possibly through the improvement of soil conditions for microbial degradation. Soil dilution had a better effect on promoting the loss of soil-borne HCHs, relative to soil-borne-DDTs. The research findings obtained from this study have implications for management of heavily contaminated soils with DDTs and HCHs. Remediation of DDTs and HCHs-contaminated soils in a cost-effective way can be achieved by incorporating treatment techniques into conventional agricultural practices. Applications of iron-rich fertilizer and soil dilution treatments could cost-effectively reduce soil-borne DDTs and HCHs, and subsequently the uptake of these organochlorine pesticides by vegetables.  相似文献   
68.
Plant uptake of toxins and their translocation to edible plant parts are important processes in the transfer of contaminants into the food chain. Atropine, a highly toxic muscarine receptor antagonist produced by Solanacea species, is found in all plant tissues and can enter the soil and hence be available for uptake by crops. The absorption of atropine and/or its transformation products from soil by wheat (Triticum aestivum var Kronjet) and its distribution to shoots was investigated by growing wheat in soil spiked with unlabeled or 14C-labeled atropine. Radioactivity attributable to 14C-atropine and its transformation products was measurable in plants sampled at 15 d after sowing (DAS) and thereafter until the end of experiment. The highest accumulation of 14C-atropine and/or its transformation products by plants was detected in leaves (between 73 and 90% of the total accumulated) with lower amounts in stems, roots, and seeds (approximately 14%, 9%, and 3%, respectively). 14C-Atropine and/or its transformation products were detected in soil leachate at 30, 60, and 90 DAS and were strongly adsorbed to soil, with 60% of the applied dose adsorbed at 30 DAS, plateauing at 70% from 60 DAS. Unlabeled atropine was detected in shoots 30 DAS at a concentration of 3.9 ± 0.1 μg kg?1 (mean ± SD). The observed bioconcentration factor was 2.3 ± 0.04. The results suggest a potential risk of atropine toxicity to consumers.  相似文献   
69.
Abstract

The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac‐sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac‐sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (KoC), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac‐sodium < fluometuron < prometryn < diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac‐sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step ω = [nad / nde ‐1] x 100). Soil type and initial concentration had significant effect on ω. The effect of sorption and desorption properties of these four herbicides on the off‐site transport to contaminate surface and groundwater are also discussed in this paper.  相似文献   
70.
The biogeochemistry at the interface between sediments in a seasonally ponded wetland (slough) and an alluvial aquifer contaminated with landfill leachate was investigated to evaluate factors that can effect natural attenuation of landfill leachate contaminants in areas of groundwater/surface-water interaction. The biogeochemistry at the wetland-alluvial aquifer interface differed greatly between dry and wet conditions. During dry conditions (low water table), vertically upward discharge was focused at the center of the slough from the fringe of a landfill-derived ammonium plume in the underlying aquifer, resulting in transport of relatively low concentrations of ammonium to the slough sediments with dilution and dispersion as the primary attenuation mechanism. In contrast, during wet conditions (high water table), leachate-contaminated groundwater discharged upward near the upgradient slough bank, where ammonium concentrations in the aquifer where high. Relatively high concentrations of ammonium and other leachate constituents also were transported laterally through the slough porewater to the downgradient bank in wet conditions. Concentrations of the leachate-associated constituents chloride, ammonium, non-volatile dissolved organic carbon, alkalinity, and ferrous iron more than doubled in the slough porewater on the upgradient bank during wet conditions. Chloride, non-volatile dissolved organic carbon (DOC), and bicarbonate acted conservatively during lateral transport in the aquifer and slough porewater, whereas ammonium and potassium were strongly attenuated. Nitrogen isotope variations in ammonium and the distribution of ammonium compared to other cations indicated that sorption was the primary attenuation mechanism for ammonium during lateral transport in the aquifer and the slough porewater. Ammonium attenuation was less efficient, however, in the slough porewater than in the aquifer and possibly occurred by a different sorption mechanism. A stoichiometrically balanced increase in magnesium concentration with decreasing ammonium and potassium concentrations indicated that cation exchange was the sorption mechanism in the slough porewater. Only a partial mass balance could be determined for cations exchanged for ammonium and potassium in the aquifer, indicating that some irreversible sorption may be occurring.Although wetlands commonly are expected to decrease fluxes of contaminants in riparian environments, enhanced attenuation of the leachate contaminants in the slough sediment porewater compared to the aquifer was not observed in this study. The lack of enhanced attenuation can be attributed to the fact that the anoxic plume, comprised largely of recalcitrant DOC and reduced inorganic constituents, interacted with anoxic slough sediments and porewaters, rather than encountering a change in redox conditions that could cause transformation reactions. Nevertheless, the attenuation processes in the narrow zone of groundwater/surface-water interaction were effective in reducing ammonium concentrations by a factor of about 3 during lateral transport across the slough and by a factor of 2 to 10 before release to the surface water. Slough porewater geochemistry also indicated that the slough could be a source of sulfate in dry conditions, potentially providing a terminal electron acceptor for natural attenuation of organic compounds in the leachate plume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号