首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   4篇
  国内免费   47篇
安全科学   6篇
废物处理   2篇
环保管理   12篇
综合类   46篇
基础理论   6篇
污染及防治   36篇
评价与监测   1篇
  2022年   3篇
  2021年   2篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2013年   7篇
  2012年   12篇
  2011年   6篇
  2010年   13篇
  2009年   8篇
  2008年   12篇
  2007年   6篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
71.
臭氧氧化法处理反渗透浓缩垃圾渗滤液   总被引:7,自引:1,他引:6  
采用臭氧氧化法处理经反渗透膜处理后的浓缩垃圾渗滤液,考察了反应时间、臭氧投量、pH和温度对COD,色度以及浓缩液中腐殖酸的去除影响,通过BOD5/COD变化分析了臭氧氧化对浓缩液生化性的提高作用。结果表明:在pH 8.0,温度30℃,臭氧投量5 g/h,反应时间90 min的条件下,浓缩液的COD、色度以及浓缩液中腐殖酸的去除率分别达到67.6%、98.0%和86.1%, BOD5/COD从0.008提升到0.26,生化性有很大提高。  相似文献   
72.
不同种泥的厌氧氨氧化反应器的启动及动力学特征   总被引:3,自引:2,他引:1  
采用2套UBF反应器R1和R~2,R1接种好氧硝化污泥与厌氧氨氧化-反硝化污泥的混合污泥,R~2接种厌氧消化絮状污泥与厌氧氨氧化-反硝化污泥的混合污泥,采用逐渐提高进水亚硝氮和氨氮浓度的方式富集培养ANAMMOX菌.结果表明,R1启动时间短,仅耗时36 d就成功启动了厌氧氨氧化反应器,而R~2则需要53 d; R1和R~2脱氮效果均较好,但R1脱氮效果优于R~2且稳定.在稳定运行阶段,R1氨氮、亚硝氮和总氮去除率分别为99. 92%、96. 64%和81. 87%左右,R~2氨氮、亚硝氮和总氮去除率分别为97. 54%、94. 91%和80. 98%左右.反应器启动成功后,Candidatus Kuenenia属在所检测出的属中丰度位列前六,在R1和R~2中的相对丰度分别为3. 22%和2. 35%;改进的Stover-Kincannon基质去除模型和二级动力学模型对拟稳态阶段R1和R~2的脱氮性能均能进行较好地拟合,经计算,R1的最大基质去除速率Umax稍大于R~2,说明R1的脱氮潜力较大.  相似文献   
73.
多核复合聚铝絮凝剂对水体残留铝的影响   总被引:2,自引:2,他引:0  
采用分别添加金属离子Fe~(3+)和Zn~(2+)的方法制备多核复合型絮凝剂聚合氯化铝铁(PAFC)和聚合氯化铝锌(PAZC),并与市售聚合氯化铝(PAC)比较处理高岭土模拟水样后出水残留铝浓度,得出复合絮凝剂具有更低的出水余铝量及更宽的pH适用范围以及更低的投加量。达到85%COD去除率,PAZC、PAFC和PAC用量分别为5、10和20 mg/L;处理后出水残余铝量分别为0.04、0.09和0.14 mg/L;处理成本分别为0.020、0.028和0.048元/t。  相似文献   
74.
为了评价垃圾渗滤液的潜在生态风险和对水生动物的毒性,以斑马鱼(Danio rerio)为受试动物,探讨垃圾渗滤液对斑马鱼的急性毒性及其在亚致死浓度胁迫下鱼鳃、肝脏中的超氧化物歧化酶(SOD)、还原型谷胱甘肽(GSH)及Na+,K+-腺苷三磷酸(ATP)酶的变化.结果表明:(1)垃圾渗滤液对斑马鱼的24、48、72、96 h的半致死浓度(LC50)分别为25.58%(体积分数,下同)、24.28%、23.18%和22.51%.(2)斑马鱼肝脏和鱼鳃中的SOD活性、GSH含量和Na+,K+-ATP酶活性的变化可以反映垃圾渗滤液序列间歇式活性污泥法(SBR)出水对斑马鱼的肝脏和鳃都具有损伤作用.(3)斑马鱼鱼体的SOD、GSH和Na+,K+-ATP酶对外界污染物的生物影响是敏感的,可将其作为垃圾渗滤液慢性胁迫的有效生物标志物.  相似文献   
75.
缺氧池填料投配比对A2/O-MBR工艺反硝化除磷的影响   总被引:2,自引:0,他引:2  
按20%的投配比往好氧1,2池中加入相同数量的悬浮式填料,将传统A2/O工艺转变为A2/O-MBR复合工艺.通过处理实际市政污水,重点考察了在缺氧池中不同填料投配比条件下,复合工艺的去除效果以及反硝化除磷效果.实验结果表明,当缺氧池中填料投配比为20%时,装置总体的处理效果最好.COD、总氮、氨氮和总磷的去除率分别达到...  相似文献   
76.
考察了pH值、搅拌时间、Mg∶N和N∶P摩尔比对鸟粪石化学沉淀法(MAP)去除垃圾渗滤液中低浓度氨氮的影响,使用Design Expert 7.1.3进行3水平4因素响应曲面中心复合设计优化实验,并通过二次多项式拟合和参数优化,得到:当pH为10,搅拌时间为30 min,Mg∶N摩尔比为1.41,N∶P摩尔比为1.34时,氨氮去除率(Y1)可以达到最大值71.2%,体系中的残留PO34--P浓度(Y2)趋近于零,达到我国《生活垃圾填埋场污染控制标准排放标准》的排放标准。此外,X射线衍射图谱的分析表明大部分沉淀物质为磷酸铵镁。  相似文献   
77.
响应面法优化Fenton处理难降解反渗透垃圾浓缩渗滤液   总被引:10,自引:2,他引:8  
采用了基于中心复合设计(CCD)的响应面分析方法(RSM)研究了Fenton试剂处理难降解反渗透垃圾浓缩渗滤液过程中初始pH、FeSO4.7H2O用量、[H2O2]/[Fe2+]摩尔比3个因素对浓缩液中COD去除率的影响。由Design Ex-pert 7.1软件设计分析实验数据,得到了一个二次响应曲面模型,模型具有较高的回归率(R2=0.9699),与实验结果吻合程度较高。该模型显示COD的去除率与3个因素之间不是简单的单调函数关系,它们彼此之间存在一个最佳数值而使去除率达到最高。H2O2与Fe2+之间具有很强的相互增效作用,COD的去除由氧化作用和混凝作用共同完成。在最佳pH值为3.75,FeSO4.7H2O投加量为17.91 mmol/L、[H2O2]/[Fe2+]摩尔比为1.36的反应条件下,COD去除率能达到最高值(72.25%)。  相似文献   
78.
周少奇  钟红春  胡永春 《环境科学》2008,29(8):2201-2205
联合运用聚铁混凝、Fenton方法以及SBR牛物法3种工艺对老龄垃圾场的渗滤液进行深度处理.在综合考虑出水符合垃圾渗滤液国家一级排放标准以及运行成本经济性的前提下,在进水主要污染物COD为640 mg·L-1、色度为500的条件下,推荐了聚铁混凝反应及Fenton反应的最优条件:聚铁加药量为0.45 mL·L-1,[Fe2 ]投加量为0.006 mol,[H2O2]投加量为0.006 mol.L-1,反应时间4 h,Na2CO3投加量约为0.7 g·L~,0.1%PAM投加量为2 mL·L-1,出水COD为68 mg·L-1,BOD为20mg.L-1.同时研究证明,在Fenton方法之前使用聚铁混凝法具有大幅度降低成本、省却pH调节步骤的优点.聚铁混凝反应及Fenton反应总药剂成本低于3.2元/t,实用价值高.Fenton反应后使用SBR生物法处理,其出水水质:COD≤80 mg·L-1.BOD≤8mg.L-1,,NH 4-N≤3 mg.L-1.色度≤5倍,SS≤10 mg·L-1.符合垃圾渗滤液国家一级排放标准.  相似文献   
79.
Fenton法氧化/混凝作用去除腐殖酸的研究   总被引:5,自引:0,他引:5  
采用Fenton法处理高浓度腐殖酸模拟废水,考察反应时间、初始pH、H2O2和Fe2+投量对腐殖酸COD、TOC、UV254、A400的影响,通过体系平均氧化态(η)、A465/A665、氧化/混凝作用去除COD比值(φ)、Zeta电位(ζ)等的变化研究氧化和混凝作用对腐殖酸去除的特性.结果表明,Fenton试剂能在较宽初始pH范围(2.0~5.0)内有效降解腐殖酸.当反应时间为2h,腐殖酸A400降低值(78.2%~94.5%)比UV254(75.6%~88.4%)高,COD去除率(50.8%~62.5%)比TOC(31.2%~35.1%)高.腐殖酸的去除由氧化作用(CODoxid)和混凝作用(CODcoag)共同完成.反应初始阶段腐殖酸主要通过氧化作用迅速降解去除.腐殖酸易被部分氧化为小分子有机物而不易矿化,过多Fe2+投量([Fe2+]0.08mol/L)会使CODoxid下降.混凝主要通过电中和及吸附网捕作用进行,氧化作用影响混凝作用,高CODoxid导致低CODcoag;高H2O2投量下([H2O2]0.2mol/L)Fe2+投量显著影响混凝作用对COD的去除.  相似文献   
80.
大坦沙污水厂承接粪便污水的脱氮除磷研究   总被引:2,自引:0,他引:2  
广州市大坦沙污水处理厂采用A2/O工艺,合并处理城市生活污水和粪便污水,由于粪便污水的污染物含量高和水量不稳定等特点,对水厂的运行有不利的影响。实践表明:通过控制好氧池溶解氧、延长好氧段的水力停留时间、增大回流比和提高MLSS与污泥龄等措施,该厂取得较好的脱氮除磷效果,实现出水COD、总氮、氨氮和总磷达标排放。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号