首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   5篇
  国内免费   31篇
安全科学   1篇
废物处理   2篇
环保管理   18篇
综合类   65篇
基础理论   26篇
污染及防治   52篇
评价与监测   16篇
社会与环境   1篇
  2023年   5篇
  2022年   6篇
  2021年   7篇
  2020年   7篇
  2019年   3篇
  2018年   8篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   9篇
  2011年   10篇
  2010年   9篇
  2009年   10篇
  2008年   19篇
  2007年   14篇
  2006年   13篇
  2005年   8篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1996年   2篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有181条查询结果,搜索用时 31 毫秒
81.
Enhanced knowledge of water and solute pathways in catchments would improve the understanding of dynamics in water quality and would support the selection of appropriate water pollution mitigation options. For this study, we physically separated tile drain effluent and groundwater discharge from an agricultural field before it entered a 43.5-m ditch transect. Through continuous discharge measurements and weekly water quality sampling, we directly quantified the flow route contributions to surface water discharge and solute loading. Our multi-scale experimental approach allowed us to relate these measurements to field-scale NO3 concentration patterns in shallow groundwater and to continuous NO3 records at the catchment outlet. Our results show that the tile drains contributed 90-92% of the annual NO3 and heavy metal loads. Considering their crucial role in water and solute transport, enhanced monitoring and modeling of tile drainage are important for adequate water quality management.  相似文献   
82.
The Netherlands has attempted to follow EU guidelines in developing national policies to reduce pollution of groundwater by nitrates originating from (over) fertilized agricultural land. The EU has not been satisfied with these policies and this is resulting in legal conflicts. National policies have focused on nitrogen budgeting and on fertilization rates, over-simplifying the crucial role of soils during the leaching of nitrates to groundwater. As an alternative, a dynamic approach using simulation modeling is introduced as is illustrated for a study area in the Netherlands. A number of considerations for future policy directions are suggested, including requirements for research: (i) promotion of research aimed at improving and maintaining nutrient use efficiency at farm level; (ii) promotion of joint learning experiences between farmers and researchers, where farmers’ organizations could act as “research consortia”; (iii) emphasis on site and time specific management (precision agriculture) in policy development, and provision of site-specific advice via modern information and communication technologies; (iv) clearer guidelines for groundwater monitoring procedures, including additional monitoring at greater depths and consideration of groundwater quality from an appropriate regional perspective; (v) groundwater monitoring should take place at locations selected according to specific hydro-geological characteristics, rather than being executed at random and (vi) clear goals that are defined within existing and future policies at EU and international level, should allow for regional differentiation in indicators; these being the outcome of negotiations between farmers or their representatives, policy makers and researchers.  相似文献   
83.
Batt AL  Snow DD  Aga DS 《Chemosphere》2006,64(11):1963-1971
Samples from six private wells formerly used as sources for drinking water by the residents of Washington County (Weiser, Idaho) were collected to assess the impact of a nearby confined animal feeding operation (CAFO) on the quality of the local groundwater. All six samples were found contaminated by two veterinary antimicrobials, sulfamethazine (at concentrations from 0.076 to 0.22 μg/l) and sulfadimethoxine (at concentrations from 0.046 to 0.068 μg/l). These groundwater samples also contained elevated concentrations of nitrate and ammonium. Three of the sampled wells have nitrate levels that exceeded the maximum contaminant level set by the US Environmental Protection Agency for drinking water, with nitrate concentration as high as 39.1 mg/l. All but one well showed nitrate, which instead contained ammonium at 1.22 mg/l. Analysis of the nitrate and ammonium in these samples by isotopic ratio mass spectrometry indicated δ15N characteristic of an animal or human waste source. Results from this study underscore the role of CAFO as an important source of antibiotic contamination of groundwater.  相似文献   
84.
In this study, the biochar (BC) produced from sawdust, sludge, reed and walnut were used to support sulfidation of nano-zero-valent-iron (S-nZVI) to enhance nitrate (NO3-N) removal and investigate the impact on greenhouse gas emissions. Batch experiment results showed the S-nZVI/BCsawdust (2:1, 500), S-nZVI/BCsludge (2:1, 900), S-nZVI/BCreed (2:1, 700), and S-nZVI/BC walnut (2:1, 700) respectively improved NO3-N removal efficiencies by 22%, 20%, 3% and 0.1%, and the selectivity toward N2 by 22%, 25%, 22% and 18%. S-nZVI uniformly loaded on BC provided electrons for the conversion of NO3-N to N2 through Fe0. At the same time, FeSx layer was formed on the outer layer of ZVI in the sulfidation process to prevent iron oxidation, so as to improve the electrons utilization efficiency After adding four kinds of S-nZVI/BC into constructed wetlands (CWs), the NO3-N removal efficiencies could reach 100% and the N2O emission fluxes were reduced by 24.17%-36.63%. And the average removal efficiencies of TN, COD, TP were increased by 21.9%, -16.5%, 44.3%, repectively. The increasing relative abundances of denitrifying bacteria, such as Comamonas and Simplicispira, suggested that S-nZVI/BC could also improve the process of microbial denitrification. In addition, different S-nZVI/BC had different effects on denitrification functional genes (narG, nirk, nirS and nosZ genes), methanotrophs (pmoA) and methanogenesis (mcrA). This research provided an effective method to improve NO3-N removal and reduce N2O emission in CWs.  相似文献   
85.
Biological and abiotic approaches for treating co-mingled perchlorate, nitrate, and nitramine explosives in groundwater were compared in microcosm and column studies. In microcosms, microscale zero-valent iron (mZVI), nanoscale zero-valent iron (nZVI), and nickel catalyzed the reduction of RDX and HMX from initial concentrations of 9 and 1 mg/L, respectively, to below detection (0.02 mg/L), within 2 h. The mZVI and nZVI also degraded nitrate (3 mg/L) to below 0.4 mg/L, but none of the metal catalysts were observed to appreciably reduce perchlorate ( approximately 5 mg/L) in microcosms. Perchlorate losses were observed after approximately 2 months in columns of aquifer solids treated with mZVI, but this decline appears to be the result of biodegradation rather than abiotic reduction. An emulsified vegetable oil substrate was observed to effectively promote the biological reduction of nitrate, RDX and perchlorate in microcosms, and all four target contaminants in the flow-through columns. Nitrate and perchlorate were biodegraded most rapidly, followed by RDX and then HMX, although the rates of biological reduction for the nitramine explosives were appreciably slower than observed for mZVI or nickel. A model was developed to compare contaminant degradation mechanisms and rates between the biotic and abiotic treatments.  相似文献   
86.
Groundwater contamination was characterised using a methodology which combines shallow groundwater geochemistry data from 17 piezometers over a 2 yr period in a statistical framework and hydrogeological techniques. Nitrate–N (NO3-N) contaminant mass flux was calculated across three control planes (rows of piezometers) in six isolated plots. Results showed natural attenuation occurs on site although the method does not directly differentiate between dilution and denitrification. It was further investigated whether NO3-N concentration in shallow groundwater (<5 m below ground level) generated from an agricultural point source on a 4.2 ha site on a beef farm in SE Ireland could be predicted from saturated hydraulic conductivity (Ksat) measurements, ground elevation (m Above Ordnance Datum), elevation of groundwater sampling (screen opening interval) (m AOD) and distance from a dirty water point pollution source. Tobit regression, using a background concentration threshold of 2.6 mg NO3-N L−1 showed, when assessed individually in a step wise procedure, Ksat was significantly related to groundwater NO3-N concentration. Distance of the point dirty water pollution source becomes significant when included with Ksat in the model. The model relationships show areas with higher Ksat values have less time for denitrification to occur, whereas lower Ksat values allow denitrification to occur. Areas with higher permeability transport greater NO3-N fluxes to ground and surface waters. When the distribution of Cl was examined by the model, Ksat and ground elevation had the most explanatory power but Ksat was not significant pointing to dilution having an effect. Areas with low NO3 concentration and unaffected Cl concentration points to denitrification, low NO3 concentration and low Cl chloride concentration points to dilution and combining these findings allows areas of denitrification and dilution to be inferred. The effect of denitrification is further supported as mean groundwater NO3-N was significantly (P < 0.05) related to groundwater N2/Ar ratio, redox potential (Eh), dissolved O2 and N2 and was close to being significant with N2O (P = 0.08). Calculating contaminant mass flux across more than one control plane is a useful tool to monitor natural attenuation. This tool allows the identification of hot spot areas where intervention other than natural attenuation may be needed to protect receptors.  相似文献   
87.
Within a collaborative project between Slovenian Environment Agency (ARSO) and Research Center Jfilich (FZJ), nitrogen reduction levels necessary to reach groundwater quality targets in Slovenia were assessed. For this purpose the hydrological model GROWA- DENUZ was coupled with agricultural N balances and applied consistently to the whole territory of Slovenia in a spatial resolution of 100 x 100 m. GROWA was used to determine the water balance in Slovenia for the hydrologic period 1971-2000. Simultaneously, the displaceable N load in soft was assessed from agricultural Slovenian N surpluses for 2011 and the atmospheric N deposition. Subsequently, the DENUZ model was used to assess the nitrate degradation in soil and, in combination with the percolation water rates from the GROWA model, to determine nitrate concentration in the leachate. The areas showing predicted nitrate concentrations in the leachate above the EU groundwater quality standard of 50 mg NO3/L have been identified as priority areas for implementing nitrogen reduction measures. For these "hot spot" areas DENUZ was used in a backward mode to quantify the maximal permissible nitrogen surplus levels in agriculture to guarantee a nitrate concentration in percolation water below 50 mg NO3/L. Model results indicate that additional N reduction measures should be implemented in priority areas rather than area-covering. Research work will directly support the implementation of the European Union Water Framework Directive in Slovenia, e.g., by using the maximal permissible nitrogen surplus levels as a framework for the derivation of regionally adapted and hence effective nitrogen reduction measures.  相似文献   
88.
柳蓉  龙焰  王立立  何婷  叶锦韶 《环境科学》2015,36(5):1785-1792
苯系物是填埋场填埋气中恶臭有机气体的重要成分之一,填埋气中的CH4则是重要的温室气体.填埋覆土层中的微生物可以氧化CH4和苯系物,因此,强化微生物的氧化效能有助于削减和控制填埋气的污染.电子受体还原可耦合甲烷和某些有机物的厌氧氧化,从而去除甲烷和有机物.鉴此,本研究通过静态培养试验,分析了电子受体SO2-4共存条件下,NO-3和CH4共存对覆土中苯系物厌氧降解的影响.结果表明不外加NO-3时,苯系物抑制CH4的降解,加入NO-3后,苯系物共存反而有利于CH4的去除;单独添加NO-3或CH4都能促进填埋覆土中苯系物的去除;而同时添加NO-3和CH4能更好地促进苯系物的去除,甲苯、二甲苯和异丙苯的去除率最高可达65%、88%和82%,远高于不添加NO-3和CH4对照处理的53%、76%和31%;NO-3还原与CH4厌氧氧化耦合过程能同步促进苯系物的厌氧氧化.  相似文献   
89.
The European Water Framework Directive (WFD) is the overall driver for this environmental study and currently requires the identification of patterns and sources of pollution (monitoring) to support objective ecological sound decision making and specific measures to enhance river water quality (modelling). The purpose of this paper is to demonstrate in a case study the interrelationship between (1) hydrologic and water quality monitoring data for river basin characterization and (2) modelling applications to assess resources management alternatives. The study deals with monitoring assessment and modelling of river water quality data of the main stem Saale River and its principal tributaries. For a period of 6 years the data, which was sampled by Environmental Agencies of the German states of Thuringia, Saxony and Saxony-Anhalt, was investigated to assess sources and indicators of pollution. In addition to the assessment a modelling exercise of the routing of different pollutants was carried out in the lower part of the test basin. The modelling is a tool to facilitate the evaluation of alternative measures to reduce contaminant loadings and improve ecological status of a water body as required by WFD. The transport of suspended solids, salts and heavy metals was modelled along a selected Saale reach under strong anthropogenic influence in terms of contaminants and river morphology between the city of Halle and the confluence with the Elbe River. The simulations were carried out with the model WASP5 which is a dynamic flood-routing and water quality model package developed by the US Environmental Protection Agency.  相似文献   
90.
On-site sanitation is increasingly adopted in urban cities in India. The adoption of On-site sanitation system puts the groundwater resources in the vicinity of the system at a greater risk. Microbial contaminants as well as chemical contaminants like Chloride and Nitrate are generated from human waste. These contaminants travel through the medium and ultimately get in contact with the groundwater. Hence, the groundwater sources are vulnerable to nitrate contamination near the On-site sanitation systems. The present study indicates significant Nitrate and Chloride contamination in samples collected close to On-site sanitation systems. The recommended limit set by the Bureau of Indian standards (BIS) limit of 45 mg/l for Nitrate concentration is also exceeded in few samples. The study indicates that Bacterial as well as Nitrate contamination is more in Monsoon as compared to Summer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号