首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   21篇
  国内免费   37篇
安全科学   4篇
废物处理   1篇
环保管理   8篇
综合类   94篇
基础理论   30篇
污染及防治   17篇
评价与监测   12篇
社会与环境   5篇
  2019年   2篇
  2017年   6篇
  2016年   5篇
  2015年   6篇
  2014年   15篇
  2013年   16篇
  2012年   24篇
  2011年   16篇
  2010年   26篇
  2009年   18篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  1998年   1篇
  1991年   3篇
  1990年   11篇
  1989年   1篇
  1986年   1篇
排序方式: 共有171条查询结果,搜索用时 375 毫秒
81.
通过室内实验模拟高州水库底泥中磷的吸附与解吸过程,分别对比不同样点底泥和不同磷浓度上覆水对底泥磷释放和吸附的影响,研究了水库底泥中磷的吸附与解吸动态变化规律.结果表明:高州水库不同样点底泥对磷的吸附和解吸的动态平衡浓度为0.03 mg/L~0.05 mg/L,不同磷浓度上覆水底泥对磷的吸附和解析动态平衡浓度为0.05 mg/L.上覆水和底泥中磷含量的高低均会影响磷的吸附和解吸动态变化.底泥中磷含量与磷吸附速率成反比;上覆水中磷含量与磷吸附速率成正比关系.  相似文献   
82.
西双版纳森林植被碳储量动态与增汇潜力研究   总被引:1,自引:0,他引:1  
科学评估区域森林碳储量动态与增汇潜力对理解陆地碳循环具有重要的意义。本文基于生物量转换因子连续函数法,对西双版纳1993—2006年间森林植被碳储量与碳汇潜力进行了研究,结果表明,(1)西双版纳1993—1994年间森林植被整体碳储量为60 770 378.37 t,碳汇增量表现为栎类(Quercus L.)〉经济林〉思茅松(Pinus kesiya)〉其它阔叶〉桤木(Alnus cremastogyne),主要森林类型的碳密度范围为15.08~74.76 t.hm-2;2005—2006年间森林植被整体碳储量为62 347 715.19 t,比1994—1993年间上升2.60%,碳汇增量均表现为其它阔叶〉经济林〉栎类〉思茅松〉桤木〉杉木(Cunninghamia lanceolate)〉其它针叶,主要森林类型的碳密度范围为8.60~70.90 t.hm-2。(2)2005—2006年间,景洪森林植被整体碳储量为23 299 801.23 t,碳密度范围为8.78~73.35 t.hm-2;勐海森林植被整体碳储量为14 058 043.42 t,碳密度范围为7.95~59.51 t.hm-2;勐腊森林植被整体碳储量为25 050 562.32 t,碳密度范围为8.46~98.73 t.hm-2。可见,1993—2006年间,西双版纳森林植被起到了重要的碳汇功能,且其碳汇功能呈上升趋势。  相似文献   
83.
利用重组双杂交酵母快速检测技术分析了东江下游两个污水厂、8个工业废水排放口和6条受纳河流水体共16个样品中的雌激素效应物质浓度,并按照雌二醇当量(EEQ)计算了水中雌激素效应水平。在被检测废水样品中,排水的EEQ值处于0.3~2.8ng/L之间,其中造纸厂与纸制品厂排水具有明显雌激素效应。采自河涌的6个样品有4个样品检出雌激素活性,雌激素效应水平在1.9~8.8ng EEQ/L之间。结果表明,东江下游行业废水处理厂出水中的EEQ浓度应与河涌水体中的EEQ在相同数量级, 与国内报道的其他地区河流及工厂排水污染水平类似。污染较为严重的河涌水体雌激素水平明显高于污水处理厂及工厂排水,推断污染河涌水体中的雌激素效应物质应来自未经处理的污染源。  相似文献   
84.
85.
广州市大气气态总汞含量季节和日变化特征   总被引:5,自引:0,他引:5       下载免费PDF全文
利用高时间分辨率自动测汞仪(tekran 2537B),于2010-11~2011-11对广州市大气气态总汞(TGM)进行了连续1a的观测.结果表明,广州市大气气态总汞的年平均含量为(4.86±1.36)ng/m3,表明该地区受到了一定程度的大气汞污染.TGM浓度按季节表现为:春季>冬季>秋季>夏季.TGM污染呈现春高夏低的现象,气象因素如边界层、静止风是影响其季节分布不同的主要原因.日变化趋势为中午最低,早晚出现2个高峰,边界层和温度对TGM日变化有很大影响.对广州市大气气态汞的可能来源分析结果表明,TGM主要来源于本地人为排放,其中市内燃煤电厂和水泥厂等人为源排放可能是广州市大气气态总汞的主要来源.  相似文献   
86.
以饮用水源集水区为中心,沿支流采集水样,采用美国环境保护署(USEPA)暴露风险评价方法,结合该地区的参数计算环境健康风险。结果表明:(1)所有采样点均检出PAEs类污染物邻苯二甲酸正丁酯(DBP)、邻苯二甲酸二(2-乙基己基)酯(DOP)和邻苯二甲酸二乙酯(DEP),其中DOP高于DBP和DEP。(2)该饮用水源集水区3种PAEs污染物质量浓度均高于流域内其他乡镇饮用水源,在国内外同类地区也属于中上水平。DOP是集水区内需首要控制的PAEs类污染物。(3)在人类活动干扰少的地区河流污染物的环境健康风险水平较低,而在人口密集区和工业集中区风险水平较高。河流上游风险值低,中游高,下游和库区又逐渐回落。该水源集水区的PAEs类污染物环境健康风险值未超过USEPA规定,但与国内外其它地区相比属于中上水平,存在一定的潜在健康风险,需要根据PAEs的可能来源在水源地环境风险管理中加以防范。  相似文献   
87.
家庭尘土中多溴联苯醚的含量及人体暴露水平初步研究   总被引:7,自引:6,他引:1  
在广州和海口随机采集了52个家庭尘土样品,用GC/MS定量分析了样品中∑10PBDEs(BDE28,47,66,85,99,100,153,154,183,209之和)的含量、单体组成模式和可能的影响因素,并估算了成年人和婴幼儿通过尘土摄入对PBDEs的暴露水平.结果表明,所有样品中都检出PBDEs,∑10PBDEs的含量范围为544.2~9 654 ng/g,中位值和平均值分别为2 547 ng/g和3 096 ng/g,广州样品中∑10PBDEs含量明显高于海口样品.尘土中PBDEs含量与家用电器和含聚氨酯泡沫家具数量、电器使用时间没有显著相关性.家庭尘土中PBDEs的主要成分是BDE209,其平均含量高达3 021 ng/g,占∑10PBDEs含量的73.70%~99.74%,平均值为96.85%.BDE47、99和183是∑9PBDEs(BDE209除外)中含量最丰富的单体,其含量均值分别为24.48%、23.99%和21.66%,广州和海口样品的单体组成没有显著区别.成年人和婴幼儿通过尘土摄入对PBDEs的暴露水平分别为10.59~254.7 ng/d和140.1~509.3 ng/d,由于婴幼儿的尘土摄入量远大于成年人,其对PBDEs的暴露水平也明显偏高.尘土摄入是人体暴露于PBDEs的重要途径,对婴幼儿更是如此.  相似文献   
88.
东莞市农业土壤和蔬菜砷含量及其健康风险分析   总被引:4,自引:1,他引:3  
研究系统采集了东莞市118个农业土壤样品和43个蔬菜样品进行砷含量分析,研究了土壤和蔬菜砷含量及其健康风险。研究发现,东莞市农业土壤砷含量变化范围0.40~28.87mg/kg,平均值12.95mg/kg,远高于东莞市背景值,其中62%的样品砷含量超过国家一级标准限定值,砷含量的变异系数为53.28%,变异程度较大。东莞市各区域土壤砷空间分布不均匀,土壤砷含量平均值大小排序如下:西部平原区环境保护区中部过渡区东南丘陵区。土壤砷主要来源于成土母质,化石燃料燃烧、农药、化肥(磷肥)等工农业活动的输入也不容忽视。东莞市蔬菜砷含量超标比较严重,蔬菜砷对东莞市部分人群存在一定的健康风险。  相似文献   
89.
东莞市农业土壤和蔬菜铅含量特征分析   总被引:6,自引:1,他引:5  
重金属元素铅的危害已经引起人们的广泛关注。为了解东莞市农业土壤和蔬菜铅污染的状况,选取了该市118个农业土壤样品和43个蔬菜样品进行铅含量分析。研究发现,东莞市农业土壤铅含量普遍较高,92.4%的样点铅含量超过国家土壤环境质量一级标准,79.7%的样点铅含量高于东莞市背景值,且变异程度较大,土壤铅含量最大值(140.58mg/kg)为最小值(20.36mg/kg)的7倍。各区域农业土壤铅污染程度各异,依据土壤铅含量高低可作如下排序:西部平原区中部过渡区东南丘陵区环境保护区。根据分析,东莞市土壤铅的污染源主要为工业企业"三废"的排放、含铅农药和肥料的大量使用、汽车尾气的排放和大气沉降等。东莞市蔬菜铅含量超标比较严重,特别是油麦菜和生菜,超标率分别达到42.86%和37.5%。不同品种蔬菜对土壤铅的富集能力不同,富集能力顺序依次为:生菜菠菜芥菜、油麦菜、白菜菜心、芹菜。  相似文献   
90.
HRT对悬挂链曝气式生物接触氧化工艺的影响   总被引:2,自引:1,他引:1  
采用悬挂链曝气式接触氧化工艺在不同HRT下处理大清河雨、旱季污水,应用磷脂法和TTC-脱氢酶活性法研究载体表面生物膜特性,考察了HRT对生物膜特性和水质净化效果的影响。结果表明:在4~10h间时,HRT越长,缺氧区和好氧区内生物量越小和生物活性越弱,但是好氧区内单位生物量活性越强,对污染物的平均去除率越高;当进水由生活污水转变为雨污混合水后,缺氧区和好氧区内生物量逐渐减少,生物活性降低,且好氧区内单位生物量活性也降低,但出水污染物浓度降得更低且稳定。最佳HRT为8h,对COD、NH4+-N、TN和TP的平均去除率分别为75.99%、81.94%、63.30%和81.47%,出水水质达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级标准A标准。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号