首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   4篇
  国内免费   33篇
安全科学   3篇
环保管理   3篇
综合类   51篇
基础理论   19篇
污染及防治   22篇
评价与监测   7篇
社会与环境   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   5篇
  2014年   4篇
  2013年   16篇
  2012年   9篇
  2011年   2篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   9篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有106条查询结果,搜索用时 225 毫秒
91.
矿物油(原油、机油、柴油等)、苯胺、部分金属离子及ClO-等物质对4-AAP法测定污水中的挥发酚有干扰。本文采用标加干扰物的方法研究了各种干扰物质对挥发酚测定过程中的回收率的影响规律,得到总回收率Y方程。由Y值和4-AAP法测定值CD可求得水样中挥发酚的实际含量CT(CD/Y)。混和干扰物加标拟合实验结果的相对误差<±5%。该方法测定实际水样的结果与4阶导数光谱法的结果基本吻合。本文是针对油矿区污水特点,提出的消除各种干扰挥发酚测定物质影响的研究方法。  相似文献   
92.
采用小麦和大麦为受试作物,以其在受试化合物污染的土壤中培育3 d后获得的根伸长的半数抑制浓度(IC50)评价了12种酚类化合物的毒性效应。结果表明,在所设浓度范围内,酚类对作物根伸长均存在剂量-效应关系。小麦对受试酚类的IC50范围为:12.92~231.76 mg·kg-1,其中邻苯二酚只在最高浓度500 mg·kg-1时对小麦的毒性效应显著。大麦对受试化合物的IC50范围为:7.15~478.31 mg·kg-1。小麦对3-甲基酚、双酚A、2-萘酚和壬基酚相对敏感,而其它8种化合物则是大麦相对更敏感。酚类化合物对小麦和大麦的毒性强度整体趋势一致。  相似文献   
93.
由化学法合成了一种新型类针状的二氧化锰(MnO2)材料,通过X射线衍射(XRD)、透射电镜(TEM)、比表面积测试(BET)、傅里叶转换红外光谱(FTIR)和X射线光电子能谱(XPS)等手段表征其结构特性,由MnO2对酚类有机物和医药类污染物的去除实验来评价其活性.结果表明,此材料为典型的δ-MnO2,其比表面积相对较大,为41m2·g-1,MnO2以MnO6八面体结构存在,Mn以MnO2形式存在.从MnO2对2-氯酚(2-CP)的去除及中间产物分析可知,MnO2对2-CP有较强的脱氯作用.另外,pH对2-CP的去除有较大影响.对酚类有机物和医药类污染物的去除实验考察发现,2,4-二氯酚(2,4-DCP)和2,4,6-三氯酚(2,4,6-TCP)的去除效率明显大于苯酚(Ph)和2-CP,而环丙沙星的去除与安替比林、布洛芬、苯妥英和苯海拉明相比更加容易,经过96h反应,去除率可达74%.  相似文献   
94.
环境介质中挥发酚的监测技术现状与展望   总被引:1,自引:0,他引:1  
挥发酚是一类重要环境优先污染物,严重危害生态环境和人体健康。文章综述挥发酚的分光光度法、紫外分光光度法、荧光分光光度法、气相色谱法、高效液相色谱法、流动注射分析法等检测方法的原理及应用,并展望挥发酚监测技术的研究趋势和前景。  相似文献   
95.
Anhydrosugars, such as levoglucosan and its isomers (mannosan, galactosan), as well as the solvent-extractable lignin phenols (methoxylated phenols) are thermal degradation products of cellulose/hemicellulose and lignin, respectively. These two groups of biomarkers are often used as unique tracers of combusted biomass inputs in diverse environmental media. However, detailed characterization of the relative proportion and signatures of these compounds in highly heterogeneous plant-derived chars are still scarce. Here we conducted a systematic study to investigate the yields of solvent-extractable anhydrosugars and lignin phenols in 25 lab-made chars produced from different plant materials under different combustion conditions. Solvent-extractable anhydrosugars and lignin phenols were only observed in chars formed below 350 °C and yields were variable across different combustion temperatures. The yields of mannosan (M) and galactosan (G) decreased more rapidly than those of levoglucosan (L) under increasing combustion severity (temperature and duration), resulting in variable L/M and L/(M + G) ratios, two diagnostic ratios often used for identification of combustion sources (e.g. hardwoods vs. softwoods vs. grasses). Our observations thus may provide an explanation for the wide ranges of values reported in the literature for these two ratios. On the other hand, the results of this study suggest that the ratios of the major solvent-extractable lignin phenols (vanillyls (V), syringyls (S), cinnamyls (C)) provide additional source reconstruction potential despite observed variations with combustion temperature. We thus propose using a property-property plot (L/M vs. S/V) as an improved means for source characterization of biomass combustion residues. The L/M-S/V plot has shown to be effective in environmental samples (soil organic matter, atmospheric aerosols) receiving substantial inputs of biomass combustion residues.  相似文献   
96.
In humans, the metabolism of environmental phenols may include the formation of conjugated species (e.g., glucuronides and sulfates), but the free species—not the conjugated forms—are considered biologically active. Therefore, information on the concentration of these free species in blood or urine could be helpful for risk assessment. Because conjugates could hydrolyze to their corresponding free forms during collection, handling, and storage of biological specimens, information on the temporal stability of the conjugates is of interest. Previously, we reported the temporal stability of urinary conjugates of several environmental phenols, but data on the stability of phenols' conjugated species in serum, albeit critical if concentrations of free and conjugated species are compared, are largely unknown. In the present study, we investigate the stability of the conjugates of four phenols—bisphenol A, benzophenone-3, triclosan, and 2,5-dichlorophenol—and two parabens—methyl paraben and propyl paraben—in 16 human serum samples for 30 days at above-freezing temperature storage conditions (4 °C, room temperature, and 37 °C). These conditions reflect the worst-case scenarios that could occur during the short-term storage of biological samples before their long-term storage at controlled subfreezing temperatures. We found that the percentage of the conjugated species of the four detected compounds (2,5-dichlorophenol, triclosan, and methyl and propyl parabens) in these serum specimens even when stored at 37 °C for at least 30 days did not vary significantly. These preliminary data suggest that the phenols' serum conjugates appear to be more stable than their corresponding urinary conjugates, some of which started to hydrolyze within 24 h under similar storage conditions. The reported stability of these conjugated species in human serum also suggests that the free species are unlikely to have resulted from the hydrolysis of their corresponding conjugates. This information could be important for interpreting the low concentrations of free phenol species detected in serum samples of nonoccupationally exposed populations. To our knowledge, this is the first study to report on the stability of conjugated species in serum, and as such requires replication.  相似文献   
97.
Goal, Scope and Background Atmospheric sampling (gas and particles) of 5 phenols (phenol, m-cresol, p-cresol, o-cresol, pentachlorophenol) and 15 nitrophenols (3-methyl-2-nitrophenol, 3-nitrophenol, 4-methyl-2-nitrophenol, 5-methyl-2-nitrophenol, 2-methyl-3nitrophenol, 3-methyl-4-nitrophenol, 2,6-dinitrophenol, bromoxynil, 2,5-dinitrophenol, 2,6-dinitro-p-cresol, 2,4-dinitrophenol, ioxynil, DNOC, 3,4-dinitrophenol, dinoseb) on XAD-2 resin (20 gr) and glass fibre filters, respectively, were performed in 2002 by using 'Digitel DA80' high volume samplers. These measurements were undertaken in order to show spatial and geographical variations of concentrations and the role of traffic in the emissions of these compounds to the atmosphere. Methods Sampling were performed in Strasbourg (eastern France), in its vicinity (Schiltigheim) and in Erstein. Sites were chosen to be representative of urban (Strasbourg), suburban (Schiltigheim) and rural (Erstein) conditions. Field campaigns were undertaken simultaneously in urban and suburban sites during all the seasons during 4 hours at a flow rate of 60 m3.h-1, which gives a total of 240 m3 of air per sample. Period of sampling varied between 06h00 to 10h00, 11h00 to 15h00 and 18h00 to 22h00 in order to evaluate a variation of concentration during automobile traffic between urban, suburban and rural areas. Gas and particle samples were separately Soxhlet extracted for 12 h with a mixture of CH2Cl2 / n-hexane (50:50 v/v), concentrated to about 1 mL with a rotary evaporated and finally dried under nitrogen. Dry extracts were dissolved in 1 mL of CH3CN. Before analysis, extracts were sylilated by using MTBSTFA. Analysis was performed by GC/MSD in the SIM mode. Results and Discussion Partitioning of phenolic compounds between gas and particle phases seems to be mainly correlated with vapour pressure. Among phenolic compounds analysed, phenol, p-cresol, pentachlorophenol and 2.4-dinitrophenol were detected in all samples and emissions from traffic seems to be the major source for the presence of these compounds to the atmosphere. No increase of concentrations in autumn tend to confirm this hypothesis since, with the use of domestic heating in colder months, increases of PAHs concentrations were observed and these compounds are known to be emitted by all combustion processes. Pentachlorophenol is a special case since this molecule is only used as wood preservative. Its presence in all atmospheric samples, whatever the locations and the period of time is the consequence of its persistence. Conclusions and Perspectives These measurements demonstrate that phenols and nitrophenols are emitted to the atmosphere and further measurements, in order to confirm their sources, their behaviour and their potential impact to the air quality and to human health should be undertaken especially since the literature collected is relatively old. Concentrations of pentachlorophenol measured are very low and, due to its toxicity, further investigations should be undertaken. - * The basis of this peer-reviewed paper is a presentation at the 9th FECS Conference on 'Chemistry and Environment', 29 August to 1 September 2004, Bordeaux, France.  相似文献   
98.
于瑞莲  赵元慧 《环境化学》1998,17(5):451-456
测定了24个取代苯胺和苯酚类化合物在不同PH下对大型蚤的24h半数抑制浓度24h-IC50。结果表明,苯胺类的毒性随PH的升高而增大,酚类的毒性随PH的升高而减小。  相似文献   
99.
酚类分子结构和纳滤膜特性对截留率的影响规律   总被引:1,自引:0,他引:1  
选择21种酚类化合物作为模型污染物,分别测定了三种不同纳滤膜对酚类化合物的截留率.结果表明,酚类化合物截留率受到取代基位置、种类和膜特性的影响.对NF270膜和NF膜而言,截留率从大到小的次序为邻位>间位>对位,而NF90膜的截留率为邻位>对位;供电子取代基有增大截留率的趋势,吸电子取代基有减小截留率的趋势;孔径小、荷电量大的纳滤膜截留率更大.通过基于遗传算法的偏最小二乘回归法(GA-PLS),建立了纳滤膜对酚类化合物截留率的定量构效关系模型,通过分析回归方程,可以看出酚类化合物的pKa值对截留率影响最大,影响较大的还有偶极矩等参数.  相似文献   
100.
Based on available literature data of [NO2 ], steady-state [·OH], and ·OH generation rate upon nitrate photolysis in environmental aqueous samples under sunlight, the steady-state [·NO2], could be calculated. Interestingly, one to two orders of magnitude more ·NO2 would be formed in photochemical processes in atmospheric water droplets compared to transfer from the gas phase. The relative importance of nitrite oxidation compared to nitrate photolysis as an ·NO2 source would be higher in atmospheric than in surface waters. The calculated levels of ·NO2 could lead to substantial transformation of phenol into nitrophenols in both atmospheric and surface waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号