首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4264篇
  免费   519篇
  国内免费   1567篇
安全科学   457篇
废物处理   296篇
环保管理   245篇
综合类   3513篇
基础理论   785篇
污染及防治   641篇
评价与监测   345篇
社会与环境   43篇
灾害及防治   25篇
  2024年   31篇
  2023年   162篇
  2022年   192篇
  2021年   268篇
  2020年   218篇
  2019年   249篇
  2018年   149篇
  2017年   160篇
  2016年   246篇
  2015年   259篇
  2014年   398篇
  2013年   316篇
  2012年   320篇
  2011年   315篇
  2010年   266篇
  2009年   283篇
  2008年   277篇
  2007年   283篇
  2006年   229篇
  2005年   189篇
  2004年   181篇
  2003年   160篇
  2002年   137篇
  2001年   116篇
  2000年   103篇
  1999年   109篇
  1998年   118篇
  1997年   114篇
  1996年   96篇
  1995年   71篇
  1994年   73篇
  1993年   56篇
  1992年   59篇
  1991年   48篇
  1990年   43篇
  1989年   41篇
  1988年   6篇
  1987年   7篇
  1986年   1篇
  1979年   1篇
排序方式: 共有6350条查询结果,搜索用时 15 毫秒
91.
采用活性炭涂层电极构建电容去离子吸附装置,以氯化钠模拟含盐原水,研究电压、流量、进水浓度等操作参数对活性炭涂层电极脱盐效率和能耗的影响。实验结果表明,去除率和比吸附量随着电压的增大而增加,且比能耗随之增大。流速越小,出水的浓度越低,当对出水的浓度要求较高时,宜采用小流速。当进水浓度低于活性炭涂层电极的饱和吸附量时,比吸附量随着进水浓度呈线性增加;当达到饱和吸附量时,比吸附量不会随进水浓度的增大而发生改变;比能耗随着进水浓度的增加而降低。  相似文献   
92.
采用包头钢铁集团炼铁厂的高炉渣为吸附剂(粒径0.154 nm)对Cd2+进行吸附,运用SEM技术对吸附剂进行了表征,研究了初始Cd2+质量浓度、吸附剂加入量、吸附时间、吸附温度和废水pH对Cd2+去除率的影响,并探讨了吸附机理。表征结果显示:高炉渣吸附剂具有疏松多孔的特点,表面十分粗糙,比表面积较大。实验结果表明:当吸附温度为室温(28℃)、废水pH为7、初始Cd2+质量浓度为10 mg/L、吸附剂加入量为8 g/L、吸附时间为60 min时,Cd2+去除率达到98.55%;高炉渣对Cd2+的吸附符合拟二级动力学方程和Langmuir等温吸附模型,且吸附反应易发生。  相似文献   
93.
采用SEM、EDS、XRD和称重法对聚(N-异丙基丙烯酰胺)/聚(甲基丙烯酸-2-羟乙酯)-纳米铁(PNIPAm/PHEMA-n ZVI)材料进行了表征和性能测试;并研究PNIPAm/PHEMA-n ZVI在不同浓度、p H值和温度条件下对4-NP的去除效果。结果表明,温敏水凝胶载体具有较好的多孔贯穿结构,其孔洞直径为2~20μm;负载的纳米铁颗粒粒径为70~100 nm,纳米铁的负载量为0.154 5 g/g;低于17℃时PNIPAm/PHEMA平衡溶胀比均在20左右,当温度从25℃升高到32℃时平衡溶胀比降至2左右。采用0.3 g干凝胶制备的PNIPAm/PHEMA-n ZVI,在18℃、p H=5、振荡速度100 r/min条件下,处理100 m L质量浓度为400 mg/L的4-NP水溶液3 h后去除率达到100%;PNIPAm/PHEMA经过5次重复使用后,4-NP的还原去除率仍可达到80%以上;PNIPAm/PHEMA-n ZVI储存105 d以后,储存稳定性仍在75%以上。研究表明,该温敏性凝胶在负载纳米铁方面是一种很好的载体,在去除硝基苯酚方面有实际应用潜能。  相似文献   
94.
基于地面观测数据,分析了"十一五"和"十二五"期间宁波市酸雨污染特征变化趋势。结果表明,2015年降水pH从2010年的4.37上升到4.89;2010—2015年酸雨发生频率降低了17.4百分点;重酸雨区范围不断缩小,轻酸雨区范围不断扩大,酸雨污染程度有所改善。降水中化学组成变化显示,与"十一五"末相比,2015年除NO_3~-、Cl~-外其他离子浓度均有所下降;2015年SO_3~(2-)与NO_3~-的当量浓度之比从2010年的3.10下降到1.73,表明酸雨污染从硫酸型向硫酸与硝酸混合型转变。  相似文献   
95.
为实现总氰浓度的达标,采用过硫酸盐热活化和紫外活化处理水中的铁氰化物。考察了反应时间、过硫酸根投加物质的量比及初始pH值对两种活化方式去除铁氰化物中总氰的影响。结果表明,两种活化方式的活化速率和活化过程有所不同。两种活化方式中,反应时间为3 h时总氰浓度均趋于稳定,总氰去除效果均随投加物质的量比增加而减小。热活化中,初始pH值小于10时对反应结果基本没有影响,大于10时呈抑制作用;紫外活化中,初始pH值小于10时无明显影响,大于10时呈促进作用。去除效果对比表明,过硫酸盐紫外活化优于过硫酸盐热活化。  相似文献   
96.
以重金属铜离子为研究对象,设计了包含黏土防护层、壤土运移层、竹炭(碳粉)净化层组成的复杂室内大土柱(直径Φ=280 mm)模型。在重金属铜离子运移试验研究的基础上,着重分析了铜离子在具有复杂分层结构土柱模型中的迁移规律。结果表明,黏土对铜离子的吸附阻滞作用显著高于壤土,阻滞效率在91%左右。经黏土阻滞后,碳粉净化层与壤土层自净效率约占7.5%,显著降低了模型出口铜离子残余量(可降至总量的0.45%)。对设计研究模型,试验结果充分体现出黏土吸附阻滞作用为主、碳粉净化作用为辅的显著特性。因此,如将此理念推广至地下水环境保护实践,则可简称之为"以防为主,以治为辅"的地下水环境保护理念。  相似文献   
97.
贵州省三岔河流域水化学特征及其控制因素   总被引:4,自引:0,他引:4  
对乌江源区三岔河流域枯水期和丰水期河水样品离子浓度及组成特征分析表明,河水主要的阴阳离子分别是HCO_3~–和Ca~(2+),分别占到总阴离子量的55%和总阳离子量的70%,与喀斯特地区流域相似。主要离子的时空分布的对比分析表明,Ca~(2+)、Mg~(2+)、Na~+、HCO_3~–、Cl~–枯水期浓度略高于丰水期,而K+、SO_4~(2–)、NO_3~–两期浓度变化相对较小;空间分布的多样化,反映了不同小流域在地质背景、生态环境、人为活动等方面的差异对河水离子的影响。通过Gibbs图分析表明,研究区河水水化学主要受到岩石风化的影响,通过阴阳离子三角图分析表明,研究区河水水化学主要受到碳酸岩盐的影响,并且硫酸广泛参与到岩石风化中,人为活动对流域水化学组成也有一定影响。  相似文献   
98.
甲酸、乙酸和草酸是降水中有机酸的主要成分。研究选用离子色谱法同时测定降水中的甲酸、乙酸和草酸,并对降水样品中3种有机酸的保存条件进行了研究。优化后的色谱条件为4. 0 mmol/L Na_2CO_3和1. 2 mmol/L NaHCO_3混合淋洗液,淋洗液流速为1. 0 m L/min,进样体积为200μL,电导池温度为30℃,柱温为室温。甲酸、乙酸和草酸的检出限分别为0. 002、0. 005、0. 005 mg/L,实际降水样品测定时平行样的相对标准偏差为1. 4%~12%,加标回收率为95%~118%。样品采集后需尽快用0. 45μm聚醚砜微孔滤膜过滤,4℃以下冷藏密封保存,2 d内测定。若用氢氧化钠溶液调节p H至8~10,样品可保存7 d。  相似文献   
99.
采用铝盐浸渍法制备改性活性炭。研究了铝盐种类、浸渍液浓度和不同吸附条件对Cr(Ⅵ)吸附性能的影响。结果表明:采用0. 1 mol/L Al_2(SO_4)_3浸渍法制得的改性PAC吸附效果最好,Cr(Ⅵ)的吸附量由0. 75 mg/g提高到4. 86 mg/g。当温度为30℃时,Al-PAC的最佳吸附条件为:投加量0. 2 g(每100m L),p H为4,吸附时间30 min,溶液中Cr(Ⅵ)浓度由10 mg/L降至0. 45 mg/L以下,低于排放限值。吸附动力学符合拟二级动力学方程,吸附等温线符合Freundlich方程,吸附过程为以离子交换为主要机制的化学吸附。  相似文献   
100.
采用浸渍-原位沉淀法制备了离子交换树脂负载纳米水合氧化锆(HZrO/D001)复合吸附材料,重点研究制备温度对其结构和性能的影响。采用X荧光(XRF)、扫描电镜(SEM)、傅立叶红外光谱(FTIR)等对材料进行结构表征。结果表明,离子交换树脂表面的负载物质为无定形和四方相HZrO,采用表面活性剂改性后复合吸附材料比表面积增大1.8倍;升高温度可以增大HZrO负载量,制备温度为70℃时,HZrO负载量达到最大值,为23.29%;制备温度升高,HZrO成核增多,粒径减小,复合材料比表面积增大,比表面积高达21.770 9 m~2/g;制备温度升高,HZrO结晶度提高,吸附材料对锌离子的吸附能力降低。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号