首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   6篇
  国内免费   7篇
环保管理   18篇
综合类   25篇
基础理论   4篇
污染及防治   5篇
评价与监测   3篇
灾害及防治   1篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   8篇
  2013年   1篇
  2012年   4篇
  2010年   3篇
  2007年   3篇
  2006年   4篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
2.
重庆市主城区大气细颗粒物污染特征与来源解析   总被引:1,自引:0,他引:1  
重庆市主城区大气细颗粒物(PM_(2.5))浓度从1990s的100μg·m~(-3)下降至当前的约70μg·m~(-3),但仍高于环境标准限值.为探讨重庆市主城区PM_(2.5)化学组成与来源特征,于2012—2013年在渝北区大气超级站利用四通道采样仪连续采集了颗粒物样品,分析了其中水溶性离子、碳质组分和无机元素含量.采样期间,重庆市主城区大气PM_(10)和PM_(2.5)的年日均浓度分别为103.9和75.3μg·m~(-3),扩散条件不利的冬季,细颗粒物污染较为严重.受静稳天气影响的1月和2月,受沙尘影响的3月,及二次转化显著的6月是重庆市细颗粒物污染较重的月份.重庆市PM_(2.5)组成以有机物(OM,30.8%)为主,其次为硫酸盐(SO_4~(2-),23.0%)、硝酸盐(NO_3~-,11.7%)、铵盐(NH_4~+,10.9%)、地壳物质(Soil,8.2%)、元素碳(EC,5.2%)、K~+(1.1%)、Cl~-(1.0%)和微量元素(Trace,0.6%).较高的SO_4~(2-)浓度和逐步上升的[NO_3~-]/[SO_4~(2-)]比值反映了重庆市燃煤污染较重,同时机动车污染比例逐步增加.采用主因子分析/绝对主因子得分法解析了重庆城区细颗粒物5类主要来源是:二次粒子(41.7%)、燃煤(15.6%)、建筑/道路尘(12.4%)、土壤尘(11.0%)和工业尘(10.4%),通过各污染源季节变化及与其他结果对比,该源解析结果能够较可靠反映重庆市细颗粒物的来源信息.  相似文献   
3.
根据2013年成都地区的空气质量资料,对该地区的空气质量状况进行简要分析;并利用NCEP再分析资料,基于WRF模式对成都地区污染天气和清洁天气背景下的边界层气象特征进行模拟。结果表明:(1)成都地区冬季空气质量最差,春季和秋季次之,夏季最好。(2)WRF模式的模拟结果与实际观测结果基本一致。(3)无论是冬季还是夏季,成都地区均以偏北风为主,夏季风速明显大于冬季;随高度的增加,冬季风速逐渐增大,气流运动非常弱,夏季风速先增大后减小,气流以上升运动为主。(4)无论冬季还是夏季,西北部地面气温低,东南部地面气温高,且在成都市区附近均有一个高值中心,夏季气温高于冬季。(5)从边界层高度来看,西部明显低于东部,冬季和夏季在成都市区附近有一个高值中心,夏季显著高于冬季。  相似文献   
4.
利用2015-2016年四川省21市(州)大气质量监测数据,探讨了四川省臭氧时空分布特征及污染特征。结果表明:四川省臭氧季节特征明显,全省夏季浓度最高,冬季浓度最低,春季秋季,攀西高原和川西高原为夏季春季冬季秋季,盆地西部O_3浓度最高,川西高原最低,全省最高值出现在成都;O_3小时浓度日变化规律均呈"单峰型"特征,7:00-8:00处于一天中的最低值,15:00左右臭氧浓度达到峰值;O_3为首要污染物的比例仅次于PM_(2.5),盆地西部臭氧污染最为严重;污染主要发生在4-10月,4-10月的臭氧超标天数占全年臭氧超标总天数90%以上。  相似文献   
5.
污水厂Carrousel氧化沟溶解氧和速度分布的研究   总被引:4,自引:0,他引:4  
对长沙某污水处理厂的Carrousel氧化沟进行现场测试,获得不同截面的溶解氧和速度的数据,探讨了表曝机台数、沟深、沟的长宽比、进出水位置对溶解氧和速度的影响。初步掌握了该Carrousel氧化沟内溶解氧和速度的变化规律,认为通过调节倒伞形表面曝气机,可以在沟内不同区段创造好氧与缺氧的环境,为最终实现同步硝化反硝化的高效运行做准备。  相似文献   
6.
刘骞  王维  罗彬  王康 《环境工程》2021,39(5):45-54
基于SWAT构建了岷江流域分布式水文和污染负荷模型,模拟水文变化过程的效率系数超过0.6,模拟污染物浓度的效率系数超过0.5,能够有效模拟岷江流域2015-2018年的水文、污染浓度和通量变化过程。通过模型计算分析了岷江流域主要污染物排放量变化、《水污染防治行动计划》不同减排措施及气象驱动条件对岷江流域水环境改善贡献。结果表明:岷江流域11个国考断面COD、NH3-N、TP排放量分别下降8%、13%和12%,其中8个考核断面废水排放量上升,主要污染物排放量降低,其中点源强度下降,密度上升;岷江流域中段排放强度高、减排量同样凸显,成都市对岷江出境断面污染物排放及减排贡献均高于眉山市;各项减排措施中,城镇生活污染治理对污染物减排及通量降低占主导作用,对CODMn、NH3-N、TP通量减排分别贡献53%、71%、81%;生活源减排贡献大于工业源减排,点源减排贡献率大于面源污染减排;污染减排措施对凉姜沟断面CODMn、NH3-N和TP浓度变化的贡献率分别为20.7%、26.8%和34.4%。  相似文献   
7.
为揭示成渝地区大气复合污染成因,选择乡村点资阳站的冬季,实测了颗粒物数浓度及其粒径谱分布、云凝结核(CCN),在二氧化硫、光解速率(JO1D)实测值基础上估算了新粒子生成的重要前体物气态硫酸的浓度.2012年12月5日到2013年1月5日观测期间,3~582nm颗粒物数浓度水平较高,平均值为(16072±9713)cm-3.颗粒物数谱分布呈现以积聚模态为主体的特征,占总颗粒物数浓度的46%,此比值高于我国北京、上海、广州等城市和珠江三角洲及长江三角洲的乡村点和背景点.在较高颗粒物凝结汇(CS)水平下[(4.3±3.6)×10-2s-1],甄别出7次新粒子生成(NPF)事件,占观测天数的23%.NPF事件发生时,颗粒物生成速率与增长速率分别为(5.2±1.4)cm-3s-1,(3.6±2.5)nm/h. NPF事件对CCN数浓度有明显贡献,NPF发生后CCN数浓度平均增长19%.  相似文献   
8.
该研究以探索不同菌群对黄姜废渣厌氧消化产沼气的性质为目的,分别以酵母废水活性污泥和实验室驯化的秸秆分解产甲烷菌群为产沼气菌源进行发酵,通过监测厌氧发酵过程中的甲烷生产效率、纤维素酶活性等指标,评价黄姜废渣厌氧发酵产甲烷的能力,同时考察纤维素分解菌群WDC2的加入对黄姜废渣产沼气的影响。该研究对有效处理黄姜皂素生产废渣、促进区域环境安全具有重要意义。结果表明:黄姜废渣在产甲烷菌群的作用下均能生成大量沼气,最高日产气量为可达到2 701 m L/d,最大产气效率为855 m L/g。酵母废水活性污泥产气效率明显优于秸秆分解产甲烷菌群。加入WDC2菌群能显著提高厌氧消化的前期纤维素酶活力,最高酶活分别为达到1.22 U/m L和9.42 U/m L,但WDC2的加入并没有对发酵体系的产甲烷效率产生明显的促进作用。  相似文献   
9.
基于单颗粒气溶胶质谱(SPAMS)对成都市夏冬两季大气胺颗粒进行了综合观测,结合ART-2a算法及人工合并,2个季节大气中的胺颗粒都可分为7类,各类颗粒贡献的季节差异明显,燃烧源颗粒(如EC)在夏季贡献较大,而老化的有机碳颗粒(OCa)贡献在冬季显著升高.两季节平均质谱差减进一步证明夏、冬季分别以燃烧源和老化的胺颗粒为主.因高温分解,夏季胺颗粒占比在正午出现明显的低值,而下午的燃烧活动(如生物质燃烧)对该占比提升作用明显;冬季胺颗粒占比在白天显著高于夜间.随污染加重,胺颗粒数在夏冬两季均快速增加,其中夏季EC颗粒升高最为明显,污染最重时贡献可达47%;冬季升高最明显的是老化程度更高的OCa颗粒,当PM2.5浓度达到200μg/m3以上时,其贡献比例可达37%.因此,由于污染源和气候条件的差异,成都市大气胺颗粒形成机制和理化特征季节差异巨大.  相似文献   
10.
基于2014年南充市大气污染源排放清单调查,通过实地调研、现场测试与统计年鉴等获得活动水平数据,采用排放系数法估算建立排放清单。结果表明道路机动车保有量为877 197辆,摩托车、载客汽车、载货汽车占比分别为61.8%、29.9%、8.3%。道路移动源CO 39 631.2t,NO_X26 448t、VOCs 20 544t、HC 3 648t、PM101 777t、PM_(2.5)1 600t、SO2391.7t,主要污染物为CO、NO_X和VOCs。柴油重型载货汽车、柴油轻型载货汽车、柴油大型载客汽车是NO_X、SO2、PM10和PM_(2.5)主要排放源,普通摩托车、其他燃料小型载客汽车是CO、VOCs主要排放源。普通摩托车和汽油中型载货汽车是HC主要排放源。非道路移动源污染物总量NO_X2 322t,CO 1 173t,HC 657.2t、PM 467.7t、PM_(2.5)252.9t、VOCs 179.8t。农业机械对CO、PM_(2.5)、PM、THC排放贡献率高,分别为49.5%、50.2%、48.3%、30.0%;工程机械对NO_X、PM_(2.5)、PM、THC的贡献率高,分别为51.4%、40.3%、38.9%、39.3%;船舶对VOCS排放贡献为90.3%。顺庆、高坪、嘉陵的CO、NO_X、THC、PM排放贡献率较高,蓬安VOCS排放贡献率较高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号