Microbial communities are important for high composting efficiency and good quality composts. This study was conducted to compare the changes of physicochemical and bacterial characteristics in composting from different raw materials, including chicken manure (CM), duck manure (DM), sheep manure (SM), food waste (FW), and vegetable waste (VW). The role and interactions of core bacteria and their contribution to maturity in diverse composts were analyzed by advanced bioinformatics methods combined sequencing with co-occurrence network and structural equation modeling (SEM). Results indicated that there were obviously different bacterial composition and diversity in composting from diverse sources. FW had a low pH and different physiochemical characteristics compared to other composts but they all achieved similar maturity products. Redundancy analysis suggested total organic carbon, phosphorus, and temperature governed the composition of microbial species but key factors were different in diverse composts. Network analysis showed completely different interactions of core bacterial community from diverse composts but Thermobifida was the ubiquitous core bacteria in composting bacterial network. Sphaerobacter and Lactobacillus as core genus were presented in the starting mesophilic and thermophilic phases of composting from manure (CM, DM, SM) and municipal solid waste (FW, VW), respectively. SEM indicated core bacteria had the positive, direct, and the biggest (>?80%) effects on composting maturity. Therefore, this study presents theoretical basis to identify and enhance the core bacteria for improving full-scale composting efficiency facing more and more organic wastes.
Environmental Science and Pollution Research - Soil conditioners can be used to compensate for the insufficient soil nutrition and organic matter (OM) of arable soils. However, the traditional... 相似文献
Several groups of bacteria such as Dehalococcoides spp., Dehalobacter spp., Desulfomonile spp., Desulfuromonas spp., or Desulfitobacterium spp. are able to dehalogenate chlorinated pollutants such as chloroethenes, chlorobenzenes, or polychlorinated biphenyls under anaerobic conditions. In order to assess the dechlorination potential in Yangtze sediment samples, the presence and activity of the reductively dechlorinating bacteria were studied in anaerobic batch tests. Eighteen sediment samples were taken in the Three Gorges Reservoir catchment area of the Yangtze River, including the tributaries Jialing River, Daning River, and Xiangxi River. Polymerase chain reaction analysis indicated the presence of dechlorinating bacteria in most samples, with varying dechlorinating microbial community compositions at different sampling locations. Subsequently, anaerobic reductive dechlorination of tetrachloroethene (PCE) was tested after the addition of electron donors. Most cultures dechlorinated PCE completely to ethene via cis-dichloroethene (cis-DCE) or trans-dichloroethene. Dehalogenating activity corresponded to increasing numbers of Dehalobacter spp., Desulfomonile spp., Desulfitobacterium spp., or Dehalococcoides spp. If no bacteria of the genus Dehalococcoides spp. were present in the sediment, reductive dechlorination stopped at cis-DCE. Our results demonstrate the presence of viable dechlorinating bacteria in Yangtze samples, indicating their relevance for pollutant turnover. 相似文献
The aim of this study was to evaluate the toxicological responses of earthworm (Eisenia fetida) induced by field-contaminated, metal-polluted soils. Biochemical responses and DNA damage of earthworm exposed to two multi-metal-contaminated soils in a steel industry park and a natural reference soil in Zijin Mountain for 2, 7, 14, and 28 days were studied. Results showed that three enzyme activities, including superoxide dismutase (SOD), acetylcholinesterase (AChE), and cellulase, in earthworm in metal-contaminated soils were significantly different from those of the reference soil. Cellulase and AChE were more sensitive than SOD to soil contamination. The Olive tail moment of the comet assay after 2-day exposure increased 56.5 and 552.0 % in two contaminated soils, respectively, compared to the reference soil. Our findings show that cellulase and DNA damage levels can be used as potential biomarkers for exposure of earthworm to metal-polluted soils. 相似文献
The characteristics of ambient aerosols, affected by solar radiation, relative humidity, wind speed, wind direction, and gas–aerosol interaction, changed rapidly at different spatial and temporal scales. In Taipei Basin, dense traffic emissions and sufficient solar radiation for typical summer days favored the formation of secondary aerosols. In winter, the air quality in Taipei Basin was usually affected by the Asian continental outflows due to the long-range transport of pollutants carried by the winter monsoon. The conventional filter-based method needs a long time for collecting aerosols and analyzing compositions, which cannot provide high time-resolution data to investigate aerosol sources, atmospheric transformation processes, and health effects. In this work, the in situ ion chromatograph (IC) system was developed to provide 15-min time-resolution data of nine soluble inorganic species (Cl−, NO2−, NO3−, SO42−, Na+, NH4+, K+, Mg2+ and Ca2+). Over 89% of all particles larger than approximately 0.056 μm were collected by the in situ IC system. The in situ IC system is estimated to have a limit of detection lower than 0.3 μg m−3 for the various ambient ionic components. Depending on the hourly measurements, the pollutant events with high aerosol concentrations in Taipei Basin were associated with the local traffic emission in rush hour, the accumulation of pollutants in the stagnant atmosphere, the emission of industrial pollutants from the nearby factories, the photochemical secondary aerosol formation, and the long-range transport of pollutants from Asian outflows. 相似文献
Motor vehicles are one of the largest sources of air pollutants worldwide. Despite their importance, motor vehicle emissions are inadequately understood and quantified, esp. in developing countries. In this study, the real-world emissions of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO) were measured using an on-road remote sensing system at five sites in Hangzhou, China in 2004 and 2005. Average emission factors of CO, HC and NOx for petrol vehicles of different model year, technology class and vehicle type were calculated in grams of pollutant per unit of fuel use (g l−1) from approximately 32,260 petrol vehicles. Because the availability of data used in traditional on-road mobile source estimation methodologies is limited in China, fuel-based approach was implemented to estimate motor vehicle emissions using fuel sales as a measure of vehicle activity, and exhaust emissions factors from remote sensing measurements. The fuel-based exhaust emission inventories were also compared with the results from the recent international vehicle emission (IVE) model. Results show that petrol vehicle fleet in Hangzhou has significantly high CO emissions, relatively high HC and low NOx, with the average emission factors of 193.07±15.63, 9.51±2.40 and 5.53±0.48 g l−1, respectively. For year 2005 petrol vehicles exhaust emissions contributed with 182,013±16,936, 9107±2255 and 5050±480 metric ton yr−1 of CO, HC and NOx, respectively. The inventories are 45.5% higher, 6.6% higher and 53.7% lower for CO, HC and NOx, respectively, than the estimates using IVE travel-based model. In addition, a number of insights about the emission distributions and formation mechanisms have been obtained from an in-depth analysis of these results. 相似文献
Assessing the effects of air quality on public health and the environment requires reliable measurement of PM2.5 mass and its chemical components. This study seeks to evaluate PM2.5 measurements that are part of a newly established national network by comparing them with more versatile sampling systems. Experiments were carried out during 2002 at a suburban site in Maryland, United States, where two samplers from the US Environmental Protection Agency (US EPA) Speciation Trends Network: Met One Speciation Air Sampling System—STNS and Thermo Scientific Reference Ambient Air Sampler—STNR, two Desert Research Institute Sequential Filter Samplers—DRIF, and a continuous TEOM monitor (Thermo Scientific Tapered Element Oscillating Microbalance, 1400a) sampled air in parallel. These monitors differ not only in sampling configuration but also in protocol-specific laboratory analysis procedures. Measurements of PM2.5 mass and major contributing species (i.e., sulfate, ammonium, organic carbon, and total carbon) were well correlated among the different methods with r-values >0.8. Despite the good correlations, daily concentrations of PM2.5 mass and major contributing species were significantly different at the 95% confidence level from 5% to 100% of the time. Larger values of PM2.5 mass and individual species were generally reported from STNR and STNS. These differences can only be partially accounted for by known random errors. Variations in flow design, face velocity, and sampling artifacts possibly influenced the measurement of PM2.5 speciation and mass closure. Statistical tests indicate that the current uncertainty estimates used in the STN and DRI network may underestimate the actual uncertainty. 相似文献
The concentrations and size distributions of low molecular weight dicarboxylic acids in suburban particulate matter collected in early and mid-autumn 2002 and early and mid-summer 2003 in Tainan, Taiwan, were analyzed. PM2.5 contained, on average, 449.3 ng m−3 oxalic acid, 53.0 ng m−3 malic acid, 45.5 ng m−3 maleic acid, 29.6 ng m−3 succinic acid, 20.8 ng m−3 malonic acid, and 11.6 ng m−3 tartaric acid. Bar tartaric acid, concentrations were higher during the day, indicating that these acids are photochemical products. Furthermore, the malonic acid–succinic acid ratio of 0.79 during daytime and 0.60 during nighttime demonstrates that more succinic acid is converted to malonic acid during daytime, and that aerosol dicarboxylic acids predominantly originate from photochemical oxidation during daytime. The concentration peak of oxalic acid occurred in the condensation and droplet modes (0.32–1.0 μm), as did that of sulfate. In early summer, succinic acid, malonic acid, and oxalic acid major concentration peaks occurred at 0.32–0.54 μm, indicative of the relationship created by photochemical decomposition of succinc acid into malonic acid into oxalic acid. This photochemical decomposition accelerated in mid-summer such that most concentration peaks for succinic and malonic acids also occurred at 0.32–1.0 μm. Mid-summer is also the wettest period of the four in Tainan, with 85% RH. As a result of hygroscopic reactions in mid-summer, malonic acid and oxalic acid major concentration peaks shifted from 0.32–0.54 μm or 0.54–1.0 μm to 1.0–1.8 μm, thus extending the range in which these species were found to larger particle sizes, and this shift was highly correlated with a shift in succinic acid size distribution. This latter observation offers additional evidence that succinic acid is photochemically decomposed into malonic acid and oxalic acid and that the presence of malonic and oxalic acids in the wet mid-summer atmosphere is made more obvious via hygroscopic growth. Close correlation between succinic acid and Na+ and succinic acid and NO3− in the coarse mode is related to sea spray. 相似文献