首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   930篇
  免费   204篇
  国内免费   40篇
废物处理   2篇
环保管理   617篇
综合类   353篇
基础理论   66篇
污染及防治   12篇
评价与监测   55篇
社会与环境   62篇
灾害及防治   7篇
  2023年   11篇
  2022年   14篇
  2021年   27篇
  2020年   26篇
  2019年   33篇
  2018年   15篇
  2017年   34篇
  2016年   36篇
  2015年   52篇
  2014年   27篇
  2013年   63篇
  2012年   61篇
  2011年   51篇
  2010年   42篇
  2009年   52篇
  2008年   39篇
  2007年   43篇
  2006年   68篇
  2005年   48篇
  2004年   44篇
  2003年   54篇
  2002年   56篇
  2001年   29篇
  2000年   38篇
  1999年   26篇
  1998年   21篇
  1997年   19篇
  1996年   13篇
  1995年   16篇
  1994年   9篇
  1993年   7篇
  1992年   7篇
  1991年   6篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1986年   2篇
  1984年   5篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1974年   6篇
  1971年   4篇
  1970年   2篇
排序方式: 共有1174条查询结果,搜索用时 140 毫秒
1.
Despite long-standing knowledge of the benefits of riparian buffers for mitigating nonpoint source pollution, many streams are unprotected by buffers. Even landowners who understand ecological values of buffers mow riparian vegetation to the streambank. Do trends in rural riparian conditions reflect the development of riparian forest science? What motivates residential riparian management actions? Using high-resolution orthoimagery, we quantified riparian conditions and trends between 1998 and 2015 in the rural upper Little Tennessee River basin in Macon County, North Carolina and explored how landowners view riparian zone management and riparian restoration programs. Buffer composition in 2015 was as follows: no buffer (32.5%), narrow (19.3%), forested (26.7%), shrub (7.2%), and intermediate (7.0%). Relative to 1998, the greatest decrease occurred in the no buffer class (−17.7%, 46 km) and the largest increases occurred in the shrub (+72.5%, 20 km) and narrow (12.6%, 14 km) classes. Forested buffer marginally increased. Semi-structured interview data suggest that landowners prioritize recreational and scenic aspects of riparian buffers over ecological functions such as filtration and bank stabilization. Riparian restoration programs might be made more enticing to non-adopters if outreach language appealed to landowner priorities, design elements demonstrated intentional management, and program managers highlighted areas where ecological goals and landowner values align.  相似文献   
2.
Climate change poses water resource challenges for many already water stressed watersheds throughout the world. One such watershed is the Upper Neuse Watershed in North Carolina, which serves as a water source for the large and growing Research Triangle Park region. The aim of this study was to quantify possible changes in the watershed’s water balance due to climate change. To do this, we used the Soil and Water Assessment Tool (SWAT) model forced with different climate scenarios for baseline, mid‐century, and end‐century time periods using five different downscaled General Circulation Models. Before running these scenarios, the SWAT model was calibrated and validated using daily streamflow records within the watershed. The study results suggest that, even under a mitigation scenario, precipitation will increase by 7.7% from the baseline to mid‐century time period and by 9.8% between the baseline and end‐century time period. Over the same periods, evapotranspiration (ET) would decrease by 5.5 and 7.6%, water yield would increase by 25.1% and 33.2%, and soil water would increase by 1.4% and 1.9%. Perhaps most importantly, the model results show, under a high emission scenario, large seasonal differences with ET estimated to decrease by up to 42% and water yield to increase by up to 157% in late summer and fall. Planning for the wetter predicted future and corresponding seasonal changes will be critical for mitigating the impacts of climate change on water resources.  相似文献   
3.
Eutrophication, harmful algal blooms, and human health impacts are critical environmental challenges resulting from excess nitrogen and phosphorus in surface waters. Yet we have limited information regarding how wetland characteristics mediate water quality across watershed scales. We developed a large, novel set of spatial variables characterizing hydrological flowpaths from wetlands to streams, that is, “wetland hydrological transport variables,” to explore how wetlands statistically explain the variability in total nitrogen (TN) and total phosphorus (TP) concentrations across the Upper Mississippi River Basin (UMRB) in the United States. We found that wetland flowpath variables improved landscape-to-aquatic nutrient multilinear regression models (from R2 = 0.89 to 0.91 for TN; R2 = 0.53 to 0.84 for TP) and provided insights into potential processes governing how wetlands influence watershed-scale TN and TP concentrations. Specifically, flowpath variables describing flow-attenuating environments, for example, subsurface transport compared to overland flowpaths, were related to lower TN and TP concentrations. Frequent hydrological connections from wetlands to streams were also linked to low TP concentrations, which likely suggests a nutrient source limitation in some areas of the UMRB. Consideration of wetland flowpaths could inform management and conservation activities designed to reduce nutrient export to downstream waters.  相似文献   
4.
A nutrient loss reduction strategy is necessary to guide the efforts of improving water quality downstream of an agricultural watershed. In this study, the effectiveness of two winter cover crops, namely cereal rye and annual ryegrass, is explored as a loss reduction strategy in a watershed that ultimately drains into a water supply reservoir. Using a coupled optimization-watershed model, optimal placements of the cover crops were identified that would result in the tradeoffs between nitrate-N losses reduction and adoption levels. Analysis of the 10%, 25%, 50%, and 75% adoption levels extracted from the optimal tradeoffs showed that the cover crop placements would provide annual nitrate-N loss reductions of 3.0%–3.7%, 7.8%–8.8%, 15%–17.5%, and 20.9%–24.3%, respectively. In addition, for the same adoption levels (i.e., 10%–75%), sediment (1.8%–17.7%), and total phosphorus losses (0.8%–8.6%) could be achieved. Results also indicate that implementing each cover crop on all croplands of the watershed could cause annual water yield reduction of at least 4.8%, with greater than 28% in the months of October and November. This could potentially be detrimental to the storage volume of the downstream reservoir, especially in drought years, if cover crops are adopted in most of the reservoir's drainage area. Evaluating water yield impacts, particularly in periods of low flows, is thus critical if cover crops are to be considered as best management practices in water supply watersheds.  相似文献   
5.
Wetland protection and restoration strategies that are designed to promote hydrologic resilience do not incorporate the location of wetlands relative to the main stream network. This is primarily attributed to the lack of knowledge on the effects of wetland location on wetland hydrologic function (e.g., flood and drought mitigation). Here, we combined a watershed‐scale, surface–subsurface, fully distributed, physically based hydrologic model with historical, existing, and lost (drained) wetland maps in the Nose Creek watershed in the Prairie Pothole Region of North America to (1) estimate the hydrologic functions of lost wetlands and (2) estimate the hydrologic functions of wetlands located at different distances from the main stream network. Modeling results showed wetland loss altered streamflow, decreasing baseflow and increasing stream peakflow during the period of the precipitation events that led to major flooding in the watershed and downstream cities. In addition, we found that wetlands closer to the main stream network played a disproportionately important role in attenuating peakflow, while wetland location was not important for regulating baseflow. The findings of this study provide information for watershed managers that can help to prioritize wetland restoration efforts for flood or drought risk mitigation.  相似文献   
6.
A large international watershed, the St. Clair‐Detroit River System, containing both extensive urban and agricultural areas, was modeled using the Soil and Water Assessment Tool (SWAT) model. The watershed, located in southeastern Michigan, United States, and southwestern Ontario, Canada, encompasses the St. Clair, Clinton, Detroit (DT), Sydenham (SY), Upper, and Lower Thames subwatersheds. The SWAT input data and model resolution (i.e., hydrologic response units, HRUs), were established to mimic farm boundaries, the first time this has been done for a watershed of this size. The model was calibrated (2007–2015) and validated (2001–2006) with a mix of manual and automatic methods at six locations for flow and water quality at various time scales. The model was evaluated using Nash–Sutcliffe efficiency and percent bias and was used to explore major water quality issues. We showed the importance of allowing key parameters to vary among subwatersheds to improve goodness of fit, and the resulting parameters were consistent with subwatershed characteristics. Agricultural sources in the Thames and SY subwatersheds and point sources from DT subwatershed were major contributors of phosphorus. Spatial distribution of phosphorus yields at HRU and subbasin levels identified locations for potential management targeting for both point and nonpoint sources and revealed that in some subwatersheds nonpoint sources are dominated by urban sources.  相似文献   
7.
Given the expansion of payments for water‐based ecosystem services (PWES) worldwide, two relevant issues are as follows: (1) determination of efficient allocations of payments among land managers, and (2) how this might change when paying one manager to implement a best management practice (BMP) to enhance an ecosystem service impacts the cost‐effectiveness of BMPs considered by other land managers not currently involved in PWES. Such externalities may be negative if diminishing returns dominate, or positive if mechanisms such as “social diffusion” dominate. We analyze how a planner should optimally allocate payments, depending on whether the expected externalities are negligible, negative, or positive. We employ (1) an optimal control model to gain insights on the problem’s dynamics, and (2) stochastic dynamic programming to determine optimal funding strategies using a specific application. The study contributes to the literature by identifying dynamically optimal PWES payment patterns, and illustrates how they should change when one accounts for externalities induced by the program. Because such impacts have not been addressed previously in a rigorous way, this treatment provides useful value added for PWES design and implementation.  相似文献   
8.
以流域为单元进行水资源综合规划和管理是实现水环境改善的重要途径。本文以太湖流域第二大省界湖泊—淀山湖为例,在综合分析流域水环境质量基础上,利用GIS 分析工具划分流域治理片区并制定分区管控策略。根据流域所含骨干河流流向、骨干河流与淀山湖交汇特点、上中下游不同河段及镇域行政边界,将淀山湖流域分为吴淞江流域、千灯浦- 淀山湖流域、昆南湖荡流域、元荡湖荡流域、太浦河流域五大片区138 个子评价单元。通过水环境容量与压力两类空间叠加分析,构建形成污染重点减排区、污染综合治理区、产业绿色化提升区、生态环境保育区等四个类型区域,并提出差异化的产业准入和环境治理措施。本研究不仅为以流域为治理单元的水环境治理规划提供了较为可行的技术体系,而且为太湖流域水环境综合整治思路创新提供了可借鉴的案例。  相似文献   
9.
Green infrastructure (GI) is quickly gaining ground as a less costly, greener alternative to traditional methods of stormwater management. One popular form of GI is the use of rain gardens to capture and treat stormwater. We used life cycle assessment (LCA) to compare environmental impacts of residential rain gardens constructed in the Shepherd's Creek watershed of Cincinnati, Ohio to those from a typical detain and treat system. LCA is an internationally standardized framework for analyzing the potential environmental performance of a product or service by including all stages in its life cycle, including material extraction, manufacturing, use, and disposal. Complementary to the life cycle environmental impact assessment, the life cycle costing approach was adopted to compare the equivalent annual costs of each of these systems. These analyses were supplemented by modeling alternative scenarios to capture the variability in implementing a GI strategy. Our LCA models suggest rain garden costs and impacts are determined by labor requirement; the traditional alternative's impacts are determined largely by the efficiency of wastewater treatment, while costs are determined by the expense of tunnel construction. Gardens were found to be the favorable option, both financially (~42% cost reduction) and environmentally (62‐98% impact reduction). Wastewater utilities may find significant life cycle cost and environmental impact reductions in implementing a rain garden plan.  相似文献   
10.
To assess historical loads of nitrogen (N), phosphorus (P), and suspended sediment (SS) from the nontidal Chesapeake Bay watershed (NTCBW), we analyzed decadal seasonal trends of flow‐normalized loads at the fall‐line of nine major rivers that account for >90% of NTCBW flow. Evaluations of loads by season revealed N, P, and SS load magnitudes have been highest in January‐March and lowest in July‐September, but the temporal trends have followed similar decadal‐scale patterns in all seasons, with notable exceptions. Generally, total N (TN) load has dropped since the late 1980s, but particulate nutrients and SS have risen since the mid‐1990s. The majority of these rises were from Susquehanna River and relate to diminished net trapping at the Conowingo Reservoir. Substantial rises in SS were also observed, however, in other rivers. Moreover, the summed rise in particulate P load from other rivers is of similar magnitude as from Susquehanna. Dissolved nutrient loads have dropped in the upland (Piedmont and above) rivers, but risen in two small rivers in the Coastal Plain affected by lagged groundwater input. In addition, analysis of fractional contributions revealed consistent N trends across the upland watersheds. Finally, total N:total P ratios have declined in most rivers, suggesting the potential for changes in nutrient limitation. Overall, this integrated study of historical data highlights the value of maintaining long‐term monitoring at multiple watershed locations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号