首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   2篇
  国内免费   24篇
安全科学   1篇
综合类   30篇
基础理论   11篇
污染及防治   9篇
  2018年   1篇
  2015年   1篇
  2014年   4篇
  2013年   7篇
  2012年   6篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
本文采用血清瓶实验研究了贵屿镇练江底泥TCBPA的厌氧降解特性以及该过程中硫酸盐还原菌的变化情况.结果表明,在不同还原条件下,TCBPA降解效率顺序为:产甲烷环境硫酸盐还原环境接种控制,对应降解速率常数分别为:0.0844 d-1、0.0694 d-1、0.0561 d-1,半衰期分别为:8.2 d、10.0 d、12.4 d.与接种控制组相比,加入电子供体可加速TCBPA降解,降解速率常数可达0.0722 d-1,半衰期为9.6 d.加入邻苯二甲酸丁酯后,TCBPA降解受到抑制,降解速率常数为0.0491 d-1,半衰期为14.1 d.使用Comparative Ct法进行荧光定量PCR实验,结果表明硫酸盐还原菌在TCBPA降解过程中起到了积极的作用.  相似文献   
2.
增强多氯联苯(PCBs)的水溶性是强化PCBs微生物降解的主要控制因素之一,本研究选取了PCB5(2,3-CB)和PCB31(2,4',5-CB)作为低氯代PCBs的典型代表,以曲拉通100(TX-100)、吐温80(Tween 80)、鼠李糖脂粗提物(RL crude)3种表面活性剂和β-环糊精( HPCD)联合Burkholderia xenoνorans LB400构建PCBs好氧降解体系,测试了它们对PCB5和PCB31的溶出率及微生物生长的影响.结果表明,TX-100(CMC=194 mg·L-1)、 Tween 80(CMC=13.1 mg·L-1)、 RL crude(CMC=50 mg·L-1)浓度在1~7 CMC 时和 HPCD 浓度在500~1500 mg·L-1时对 PCB5和 PCB31溶出率分别达到54.7%~100%、59.8%~100%;10.5%~40.8%、6.8%~31.6%;10.3%~19.9%、3.3%~11.6%和19.5%~34.2%、4.2%~10.7%. TX-100浓度在1~7 CMC时对B. xenoνorans LB400生长的抑制率达到30.3%~45.8%,而Tween 80浓度在0.1~1 CMC时对其生长的抑制率为10.0%~15.4%; RL crude 本身能作为底物促进 LB400的生长,而 HPCD 对其生长无明显影响. B. xenoνorans LB400对PCB31(5 mg·L-1)的降解效率在添加表面活性剂后有不同程度的提高:TX-100,23.7%~65.5%; Tween 80,14.6%~44.3%;RL crude,9.6%~27.2%;HPCD,15.3%~20.7%;而表面活性剂对PCB5(10 mg·L-1)的降解效率则无明显影响.表面活性剂主要通过增大溶液中PCBs-表面活性剂的胶束浓度来提高LB400对PCBs的降解效率,在水溶液培养体系中当设置TX-100和Tween 80浓度分别在1和7 CMC时,PCB31的降解效率达到100%和81.7%,而此时B. xenoνorans LB400生长的抑制率为30.3%和5.4%.  相似文献   
3.
选择YT-1000型活性炭纤维(ACF)作为催化剂,考察ACF与O3协同作用催化降解水溶液中4-氯酚的最佳反应条件,并将该条件应用于焦化废水生物处理尾水中难降解有机污染物的催化氧化。ACF表面具有丰富的微孔结构,对4-氯酚有良好的吸附作用,在动力学上提高了其与O3反应的起始浓度,并且在ACF表面含氧、含氮等基团的催化作用下发生氧化反应,1 L浓度为100 mg/L的4-氯酚水样中投加2 g ACF反应6 min时,吸附作用对TOC的去除率为43.4%,而ACF协同O3作用时的TOC去除率提高到72.5%,协同增效作用为67.1%;在选定的反应条件下,ACF协同O3降解焦化废水生物处理尾水,60 min时的TOC与色度的去除率分别达到56.8%和96.3%。上述研究过程证明了吸附作用与催化作用的协同能有效降解生物过程不能降解的焦化废水中惰性有机污染物。  相似文献   
4.
苯胺分解菌的驯化筛选研究   总被引:39,自引:3,他引:39  
采用某药厂下水道污泥富集的菌种,通过驯化筛选得到对苯胺分解能力强的专性菌种Ochrobactrum anthropi。通过正交实验得出Ochrobactrum anthropi的最适生长条件:PH为6-7,温度为35-40℃,NaCl浓度为0.6%。在适合的条件下〈Ochrobactrum anthropi对苯胺有较好的降解能力。  相似文献   
5.
现代环境监测已经发展到环境质量监测为主的整体预防性监测,全球环境保护的国际性、跨学科及综合性性质,使得包括遥感在内的“3S”技术在区域环境质量监测和全球性的重大环境问题研究方面广泛应用。本文介绍了遥感技术在全球气候监测、水环境监测和大气污染监测等方面的应用实例,指出遥感技术应与地面监测紧密结合,进一步加强对环境资源的动态监测。  相似文献   
6.
膜分离技术在电镀废水处理领域有着良好的应用前景。以异丙醇铝为主要原料,经酸解、除醇、干燥和烧结过程制备陶瓷膜。采用8 nm粒径溶胶多次真空覆涂-焙烧法,在1℃/m in的焙烧条件下制备了非对称氧化铝微孔膜。测试了陶瓷膜的纯水通量、膜截留性能、膜流动电位,结果表明:经过4次的浸涂成膜,纯水通量为3.55×103L/(MPa.h.m2),达到超滤膜的要求;通过截留率计算膜片平均孔径为28 nm;流动电位为-20 mV。将制得的陶瓷膜用于电镀废水处理,COD去除率为85%,在透过液中Cu、Cr、N i浓度分别为0.0663、0.0051和0.0763 mg/L,回用废水可满足电镀前处理的使用要求。  相似文献   
7.
固化法处理废干电池   总被引:7,自引:2,他引:7  
介绍了电池的历史及其生产的现状、排废特征 ;简述了废旧干电池对环境的危害及其回收处理工艺和经济环境效益 ;结合金霸王 (中国 )有限公司废干电池的特点和电池废料的处理现状 ,对其采用固化法处理 ,然后进行渗漏试验并作出结果分析和评述 ;最后对废干电池的回收处理提出建议。  相似文献   
8.
焦化废水污染特征及其控制过程与策略分析   总被引:28,自引:6,他引:28  
针对量大面广、成分复杂、具有典型的有毒/难降解工业有机废水特征的焦化废水,介绍了不同生产工艺的水质水量、污染物组成、有机污染物的生物降解特性及基于其特性的废水处理方法的选择;重点分析了以脱氮为目标的A/O、A2/O、A/O2、O/A/O工艺的特点,强调了生物流化床反应器的高效性;从溶解氧、温度、pH值、营养组成、污泥龄及有毒有害物质调控等方面讨论了焦化废水污染控制过程的影响因素,比较了不同工程工艺的技术特点与经济差异,对一些敏感性指标提出了控制策略,强调了技术创新与政策性补偿有助于解决行业环保问题的观点.  相似文献   
9.
焦化废水处理过程所排放污泥中重金属的含量及化学形态是否构成环境风险将直接影响污泥处置方法的选择,为此,实验采用BCR顺序提取法分析了焦化废水处理站外排污泥中重金属(Cd、Hg、Pb、Cr、As、Ni、Zn、Cu和Mn)的形态特征,并采用地累积指数(Igeo)和潜在生态危害指数(RI)评价了重金属对土壤的潜在环境风险。研究结果表明:除Ni主要以可氧化态存在外,焦化废水外排污泥中其他几种重金属元素主要存在于残渣态,重金属元素的含量低于《城镇污水处理厂污染物排放标准(GB18918—2002)》中的控制限值;与城市污泥相比,焦化废水外排污泥具有低Pb、Cr、Zn、Cu含量,而高Cd、Hg、Mn含量的特点;基于Igeo和RI的评价结果,Cd和Hg是外排污泥中具有一定环境风险的元素,需要考虑其下游去向。焦化废水处理外排污泥中主要存在残渣态重金属成分,不表现为很高的环境风险,其处置应重点考虑其中有机污染物特别是POPs。  相似文献   
10.
杨娟  黄华伟  任源 《环境工程学报》2013,7(12):4607-4613
硝基苯类化合物生物降解菌的筛选及性能研究,是制药、染料等行业废水达标的重要基础。以浓度梯度升高法筛选到一株硝基苯厌氧降解菌Klebsiella oxytoca NBA-1。考察了该菌对氧气的需求,以及在厌氧条件下,温度、pH值、外加葡萄糖及硝基苯初始浓度等环境因子对菌株降解硝基苯能力的影响,并进一步讨论菌株对氯取代硝基苯类化合物的降解情况。结果表明,该菌在厌氧条件下生长比好氧条件下慢,但降解速度更快;厌氧降解硝基苯的最佳pH值和温度和分别为8.3和30~35℃;加入0.3%~0.5%的葡萄糖可促进降解,且对300 mg/L以下的硝基苯均有降解能力;该菌能将4-氯硝基苯转化为4-氯苯胺,并进一步脱氯为苯胺。研究结果可为硝基苯及含氯硝基苯的处理工艺选择提供相关的参考依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号