首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
  国内免费   7篇
综合类   11篇
基础理论   1篇
评价与监测   2篇
  2023年   2篇
  2022年   2篇
  2020年   5篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
排序方式: 共有14条查询结果,搜索用时 187 毫秒
1.
基于单颗粒气溶胶质谱仪(SPAMS)观测数据、颗粒物质量浓度数据和气象要素数据,研究了2017年11月西安市一次重污染过程中细颗粒物的化学组分特征及其成因,并使用正矩阵因子分析法(PMF)对细颗粒进行了来源解析.结果表明,西安市冬季重污染过程中细颗粒物主要类型为有机碳(OC)、元素碳(EC)、混合碳(ECOC)、富钾(K)、钠-钾(Na-K)、有机胺(amine)、矿尘(dust)和重金属(HM),其主要来源为燃煤(24.9%),二次(29.3%),工业(19.3%),交通(13.3%),生物质燃烧(5.2%)和扬尘(1.9%).通过对比分析不同污染过程细颗粒物的理化特征,发现高湿度,低风速的不利气象条件和供暖及工业生产导致的燃煤污染、二次污染,是此次重污染过程的主因.  相似文献   
2.
大连市夏季VOCs化学反应活性及来源   总被引:1,自引:1,他引:0  
为了解大连市环境空气挥发性有机物(VOCs)污染特征及来源,基于2020年6~8月高时间分辨率VOCs在线观测数据,对大连市大气VOCs的浓度水平、组成特征、反应活性及来源情况进行了分析.结果表明φ(VOCs)的平均值为(10.21±5.71)×10-9,其中烷烃占比为66.35%,烯烃为11.89%,炔烃为7.75%,芳香烃为14.01%.VOCs和NOx呈现夜间高,白天低的特征,而O3变化趋势相反.综合考虑物种活性,确定甲苯、乙烯、间/对-二甲苯、1-己烯、正丁烷、异戊烷、正戊烷和异戊二烯是影响大连市大气VOCs的关键物种,优先控制烯烃和芳香烃类化合物的排放是改善大连市夏季O3污染的关键.PMF源解析结果显示交通源(26.38%)、燃烧源(22.75%)、工业排放源(17.09%)、溶剂使用源(14.59%)、天然源(11.72%)和其他(7.47%)为监测期间VOCs的主要来源,交通源和燃烧源排放是大连市夏季O3防控的重点污染源.  相似文献   
3.
2020年初新冠肺炎疫情暴发,1月24日至4月30日河北省启动重大突发公共卫生事件一级响应.针对响应期间河北省空气质量从污染演变、时空特征、PM2.5组分、污染来源等多方面开展研究.结果表明,河北省空气质量整体较好,但全省臭氧普遍反弹(-1.3%),二次细颗粒物污染突出(SNA占比60%以上),重工业城市(唐山)空气质量最差,太行山沿线地区(石家庄、保定等)颗粒物污染严重,非通道城市(承德和张家口)明显反弹(PM2.5、SO2及CO反弹比例均50%以上).春节至元宵节期间污染过程一方面与烟花爆竹燃放相关,另一方面是由于供热、电力等基础保障类工业生产稳定,废气排放量较大行业仍处于运行状态,各项污染物排放量并位出现较大幅度降低.“十四五”及以后更长时期河北省将聚焦以二次PM2.5和臭氧为主的二次污染治理,建议加强省控站的标准化建设和区县级以下面源管控力度,钢铁企业从均衡发展、绿色发展、产业转型、工艺结构调整等长远角度考虑走高质量发展道路,有效促进科研成果落地支撑环境管理需求.  相似文献   
4.
西安市降雪中DOM荧光特性和来源分析   总被引:1,自引:1,他引:0  
利用三维荧光光谱、平行因子分析模型和后向轨迹模型等,分析西安市降雪中溶解性有机物(DOM)的荧光特性和来源,研究结果可为大气有机污染物的化学组成和来源分析提供数据基础.结果表明,降雪DOM的DOC含量为0. 88~10. 92mg·L~(-1),主要含有类腐殖质、类富里酸、类色氨酸和类酪氨酸,它们荧光强度及其总和与DOC和UV_(254)呈显著正相关(P 0. 01).降雪过程中DOM的荧光指数(FI)、生物源指数(BIX)和腐殖化指数(HIX)值分别为1. 50~1. 75、0. 87~1. 25和1. 11~1. 97,且FI与BIX和HIX分别呈正相关和负相关(P 0. 05).降雪期间气团传输轨迹包括:本地源、起始于新疆(途经甘肃、宁夏)的长距离传输、起始于内蒙古(途经宁夏)和山东(途经河南)的中距离传输,分别占总量的38. 78%、24. 04%、19. 87%和17. 31%.结果也表明,可利用代表类腐殖质、类富里酸、类色氨酸和类酪氨酸荧光峰的荧光强度与其总和表征降水中DOM的含量或相对含量,降雪中DOM兼具生物源和陆源,属于自生来源且有机质为新近产生或具有较强自源特征,本地源对降雪DOM的来源贡献最为显著.  相似文献   
5.
2018年12月30日至2019年1月15日石家庄市发生了连续的灰霾天气,出现12个重污染天,首要污染物均为PM2.5.本文从污染演变、时空分布、组分分析、污染来源和气象因素等多方面展开分析探讨污染成因.结果表明,PM2.5主要成分为二次无机离子(65.4%),主要来源为燃煤(24.4%)和工业工艺源(23.7%).随污染加剧SO42-占比和二次无机源贡献均大幅增加.先后受来自偏南-东南和偏西-西南方向低空气团及特殊地形、静稳高湿、近地逆温等不利气象条件影响,燃煤、工业和机动车尾气等一次源产生的污染物在太行山前快速积累,气态污染物二次转化和颗粒物吸湿增长推高PM2.5,硫酸盐暴发式增长加剧污染发生.建议重污染应急响应期间在确保各项减排措施落实到位情况下,加强二次无机组分前体物SO2、NOx及NH3排放源的管控,并重点关注SO2排放源(散煤等),同时加强市区东北方向新乐、无极、深泽、晋州和行唐区县大气排放源管理,减少局地传输影响.  相似文献   
6.
为了获取机动车源尾气和主要民用燃料源燃烧过程排放的颗粒物中含碳气溶胶的排放特征,使用多功能便携式稀释通道采样器和Model 5L-NDIR型OC/EC分析仪,采集分析了典型机动车源(汽油车、轻柴油车、重柴油车)、民用煤(块煤和型煤)和生物质燃料(麦秆、木板、葡萄树树枝)的PM10和PM2.5样品中的有机碳(OC)和元素碳(EC).结果表明,不同排放源释放的PM10和PM2.5中含碳气溶胶的质量分数存在显著差异.总碳(TC)在不同源PM10和PM2.5中的质量分数范围分别为40.8%~68.5%和30.5%~70.9%,OC/EC范围分别为1.49~31.56和1.90~87.57.不同源产生的含碳气溶胶均以OC为主,OC在PM10和PM2.5中的质量分数范围分别为56.3%~97.0%和65.0%~98.7%.在PM10和PM2.5的含碳气溶胶中OC质量分数按照从高到低...  相似文献   
7.
2017年10月、12月在宝鸡市城区开展了共29d的挥发性有机物(VOCs)浓度在线监测,共测出102种VOCs,分别采用最大增量反应活性(MIR)系数法和气溶胶生成系数(FAC)法估算了宝鸡市各VOCs组分的臭氧生成潜势(OFPs)和二次有机气溶胶生成潜势(SOAFPs),筛选出生成O3与SOA活性最大的VOCs成分.结果表明:宝鸡市秋季和冬季TVOC的浓度分别为(68.62±21.85)×10-9和(42.44±16.62)×10-9,总OFPs分别为185.49×10-9和126.00×10-9,总SOAFPs分别为3.26,0.65μg/m3.秋季VOCs中含量最多的2种组分为烷烃(21.83×10-9)和芳香烃(13.37×10-9),分别占TVOC的31.82%和19.49%,乙烯、反-2-戊烯和甲苯是OFPs最大的3个成分,甲苯、间/对二甲苯和乙苯是SOAFPs最大的3个成分.而在冬季,烷烃(17.34×10-9)和炔烃(8.81×10-9)是VOCs中含量最多的2种组分,分别占TVOC的40.85%和20.75%,乙烯、丙烯、乙炔是OFPs最大的3个成分,甲苯、间/对二甲苯、乙苯是SOAFPs最大的3个成分.优先减少烯烃和芳香烃的排放是宝鸡市秋冬季抑制O3和SOA的形成的有效途径.  相似文献   
8.
通过监测邢台市2017年11月15日—2018年3月15日采暖期间大气PM_(2.5)中水溶性离子,得到水溶性离子的污染特征,并结合主成分分析方法讨论不同离子的来源。结果表明,邢台市PM_(2.5)中水溶性离子主要由NO~-_3、SO_4~(2-)、NH~+_4组成,分别占总水溶性离子质量浓度的35.2%、25.7%、20.4%;SNA三元相图表明,NH~+_4、SO_4~(2-)、NO~-_3在PM_(2.5)中占比分别为10.6%~40.2%、20.5%~67.1%、26.4%~56.2%;主成分分析结果表明,PM_(2.5)中水溶性离子的主要来源有二次气溶胶、燃煤、交通源、生物质燃烧和土壤尘。  相似文献   
9.
2017年9月4日~2018年1月19日期间分别在关中地区的5个主要城市西安(XA),渭南(WN),铜川(TCH),宝鸡(BJ),咸阳(XY)设置采样点进行PM2.5,PM10颗粒物手工采样观测,采用热光透射法(TOT)分析碳组分,最小值法估算二次有机碳(SOC)浓度,结果显示PM2.5与PM10中SOC平均浓度分别为(7.44±5.54),(9.62±7.49)μg/m3,一次有机碳(POC)平均浓度分别为(7.04±2.59),(9.33±4.33)μg/m3,不同粒径颗粒物中SOC各点位的浓度值分布表现基本相同为XY > XA > WN > BJ > TCH.PM2.5中SOC含量为8.76%,OC占比为48.03%,PM10含量为6.28%,OC占比为48.09%,季节分布均呈现为秋季低冬季高,关中地区SOC污染严重.后向轨迹聚类分析结果显示污染气团传输主要是关中地区局部污染和西北,东北方向传输,其中局部污染轨迹的数量占比较多,浓度较高.低空传输与近地面风向风速及污染物分布存在差异,结合关中地区盆地地形,静风频率高,边界层低等多种因素造成颗粒物中SOC浓度较高,其中BJ点位易受到东北气团的污染物传输累积.  相似文献   
10.
关中地区细颗粒物碳组分特征及来源解析   总被引:1,自引:1,他引:0  
为研究关中地区细颗粒物中碳组分的污染特征及其来源,于2017年9月4日至2018年1月19日在关中地区5个主要典型城市(西安、渭南、铜川、宝鸡和咸阳)设置采样点(XA、WN、TCH、BJ和XY)进行细颗粒物(PM_(2.5))的手工采样观测,碳组分环境样品采用热光透射法(TOT)分析.结果表明,细颗粒物中OC和EC平均浓度分别为(14. 48±7. 86)μg·m~(-3)和(2. 27±0. 95)μg·m~(-3),占比分别为18. 04%和2. 99%,与其他城市相比污染较为严重.碳组分占比的空间分布为XY WN XA BJ TCH,且季节差异明显,冬季占比高于秋季. OC与EC的相关性显著(R~2=0. 79),有着较为相同的污染来源.OC1在碳组分中比例最高为23. 44%,碳组分的浓度顺序为OC1 EC2 EC3 OC4 EC1 OC2 OC3 EC4 EC6 EC5.正矩阵因子分解模型的源解析结果表明,该地区碳组分的4类主要贡献源为生物质燃烧与燃煤源、汽油车尾气、柴油车尾气和道路扬尘污染源,贡献率分别为48. 63%、23. 07%、18. 82%和9. 47%,各点位的污染贡献结构有着明显的差异.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号