首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   10篇
  国内免费   22篇
环保管理   1篇
综合类   44篇
基础理论   14篇
污染及防治   2篇
社会与环境   1篇
灾害及防治   1篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   4篇
  2020年   5篇
  2019年   5篇
  2018年   5篇
  2017年   2篇
  2014年   2篇
  2013年   3篇
  2012年   7篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2005年   3篇
  2004年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.
基于Malmquist指数与收敛性分析对淮海经济区城市用地全要素生产率(TFP)进行综合评价,在此基础上构建Tobit模型研究城市用地TFP及分解效率影响因素。结果显示:(1)2006~2015年城市用地TFP均值在[0.933,1.107]之间波动,年均增长1.9%,技术进步和技术效率均有贡献,但技术进步贡献大,是主要驱动力。(2)城市用地TFP存在σ收敛与绝对β收敛,不存在条件β收敛。提升土地市场化水平能够促进城市用地TFP趋向自身稳态水平,而城市用地空间结构对此具有抑制作用;(3)各因素对城市用地TFP及分解效率影响不同。人口密度对技术效率具有促进作用,城市空间结构对技术效率与技术进步具有抑制作用;外商投资对技术进步与全要素生产率具有抑制作用,而土地市场化水平对其具有促进作用。研究指出促进技术创新与进步,提高土地市场化水平及改善人地关系,规避外商投资风险与优化城市用地空间结构能提升城市用地全要素生产率。  相似文献   
2.
利用GC955在线气相色谱仪分别于2019年7月和2020年1月在天津市区开展苯系物(BTEX,包括苯、甲苯、乙苯、间/对-二甲苯和邻-二甲苯)实时在线观测,对典型污染过程中BTEX的浓度水平、组成及演化机制进行了研究,并运用特征物种比值法对BTEX的来源进行了定性分析,最后运用US EPA的人体暴露分析评价方法对BTEX健康风险进行评估.结果表明,臭氧和霾污染过程中BTEX体积分数平均值分别为1.32×10-9和4.83×10-9,其中苯的体积分数占比最大,其次是甲苯、乙苯和二甲苯占比最小.2020年1月BTEX体积分数很大程度上受到西南方向短距离传输的影响,而在2019年7月BTEX浓度受到本地排放的影响.BTEX浓度水平在2019年7月受到温度和相对湿度的共同影响,而在2020年1月当温度较低时BTEX浓度对相对湿度的变化更敏感.天津市区BTEX在霾污染过程中受生物质燃烧/化石燃料燃烧/燃煤排放的影响较大,而在臭氧污染过程中除了受到燃烧排放源影响,交通源排放在很大程度上也有影响.臭氧污染和霾污染过程中BTEX的HI分别为0.072和0.29,均处于EPA认定的安全范围内.苯的致癌风险在清洁天和污染过程中均高于EPA规定的安全阈值,需引起高度重视.  相似文献   
3.
姚青  丁净  杨旭  蔡子颖  韩素芹 《环境科学》2024,45(5):2487-2496
京津冀区域大气污染分布呈现明显的空间差异,厘清不同时间尺度下PM2.5和O3浓度分布有助于制定科学有效的污染防控措施.采用STL方法分解PM2.5和O3浓度,获取长期分量、季节分量和短期分量,研究其变化趋势与空间分布特征.结果表明,2017~2021年京津冀区域PM2.5浓度下降幅度高于O3,春、夏季PM2.5和O3浓度呈正相关,秋、冬季呈现负相关,短期分量和季节分量分别对PM2.5和O3浓度的贡献最大.PM2.5的季节分量、短期分量以及O3的长期分量和短期分量均存在2个主成分,对应河北省中南部和京津冀区域北部,在不同时间尺度上京津冀区域PM2.5和O3均存在次区域分布.与原始序列相比,长期分量能够更好地反映PM2.5和O3浓度的演变趋势;季节分量和短期分量的标准差可用于衡量各城市PM2.5和O3浓度波动情况,太行山前各城市PM2.5浓度季节分量和短期分量标准差较高,唐山的O3浓度短期分量的标准差最高.  相似文献   
4.
采用平板稀释和PCR-DGGE相结合的方法,比较了4种培养基(果胶富营养培养基PM,只含果胶一种营养的培养基PA,添加果胶的寡营养培养基YPP以及与YPP营养成分一致但不添加果胶的寡营养培养基YPG)分离番茄根际细菌的能力.结果显示:PA培养基能够分离到42种形态的细菌;YPP培养基可以分离到最高的细菌菌落数,分离获得的种类比PA少;YPP培养基分离获得细菌的种类和菌落数量比YPG培养基要多.聚类分析也显示只有果胶一种营养的PA培养基能分离到最多种类,分离获得的菌群与自然环境中微生物群落最相似.研究结果表明添加番茄根际主要分泌物——果胶到培养基中可以提高培养基分离细菌的能力.  相似文献   
5.
丛枝菌根真菌的孢子表面存在与之伴生的微生物类群,其中以细菌为主.本文以不同处理方式的珍珠巨孢囊霉(Gigaspora margarita)孢子与白三叶草(Trifolium repens L.)进行共培养试验.试验分为4组:A,孢子经表面消毒;B,孢子表面消毒后并回接伴生菌;C,孢子未经表面消毒;D,孢子存在于土壤接种物中.以灭菌的蛭石为基质,修改的Hoagland营养液作为补充营养,在相对无杂菌的环境中培养3 mo,并取样观察.结果表明,处理A的植株茎叶鲜(干)重显著低于其它处理,根系鲜重无显著差异.菌根侵染率以D处理最高,A与B、C之间存在不显著的差异.产孢数量以A最少,并与B、C之间存在显著性差异.以PCR-DGGE技术分析各处理之间孢子伴生细菌的种群差异.结果显示,A处理与其它处理间存在较大的差异.其它处理间差异较小.分析认为,伴生菌群对G.margarita及其宿主植物的生命活动起着直接或间接的影响.  相似文献   
6.
基于中国大气成分实时追踪数据集、天津气象局和生态环境局长序列PM2.5质量浓度和气象观测,结合MEIC排放清单和环境模式构建的细颗粒气象条件扩散指数,研究2000~2020年天津地区PM2.5质量浓度演变规律及驱动因子,以期更科学地分析气象对大气环境影响,为“十四五”期间深度环境治理提供支撑.结果表明,2000~2020年天津PM2.5质量浓度呈现3个阶段变化,第一阶段2000~2007年,呈现持续地上升,其变化速率为4.58μg·(m3·a)-1,该阶段排放量的快速增加是主导因素,其作用是气象条件年际波动影响的4倍,排放量增加使得PM2.5质量浓度增加45.3%;第二阶段为2007~2013年,该阶段PM2.5质量浓度呈现波动变化,出现了两个浓度峰值年(2007年和2013年),该阶段排放稳定,气象条件年际波动对PM2.5质量浓度年际波动产生重要影响,两者相关系数0.81;第三阶段为2013~2020年,PM<...  相似文献   
7.
京津冀城市群冬季二次PM2.5的时空分布特征   总被引:1,自引:1,他引:0  
二次组分是造成京津冀城市群冬季PM2.5污染的重要因素.采用CO示踪法,估算2017~2021年冬季京津冀城市群二次PM2.5浓度,并分析其时空分布特征,探讨区域二次PM2.5的影响因素.结果表明,2017~2021年冬季京津冀区域PM2.5浓度下降趋势明显,河北中南部一次PM2.5下降幅度最大,二次PM2.5浓度年际波动平稳,北京和天津二次PM2.5占比明显高于其他城市.随着污染程度加剧,一次PM2.5和二次PM2.5质量浓度均有不同程度的增加,二次PM2.5占比呈显著增大趋势.与直接测量结果相比,CO示踪法获得的结果偏低,与冬季CO浓度较高,一次PM2.5浓度高估有关,选取合适的一次气溶胶基准值是改进该方法,获取合理估算值的关键.  相似文献   
8.
为研究天津冬季重污染天气过程中颗粒物水溶性离子的粒径谱分布及二次离子生成机制,于2014年1月利用Anderson撞击式分级采样器在中国气象局天津大气边界层观测站内采集颗粒物样品,并使用离子色谱仪分析Na~+、NH_4~+、K~+、Mg~(2+)、Ca~(2+)、Cl~-、NO_3~-、SO_4~(2-)等8种水溶性无机离子(TWSII).结果表明,采样期间PM_(2.5)和PM_(10)质量浓度均值分别为(138±100)μg·m~(-3)和(227±142)μg·m~(-3),粗、细粒子中TWSII的平均浓度分别为(34.07±6.16)μg·m~(-3)和(104.16±51.76)μg·m~(-3).细粒子中SO_4~(2-)、NO_3~-和NH_4~+这3种离子的浓度远高于其他离子,且相关性较好,粗粒子中NO_3~-、SO_4~(2-)、Cl~-浓度较高.随着污染程度加剧,细粒子中TWSII浓度增加明显,粗粒子中则变化不大.水溶性离子的粒径谱分布显示,SO_4~(2-)以单模态分布,优良天峰值出现在0.43~0.65μm,NO_3~-在优良日呈现三模态分布,峰值分别出现在0.43~0.65、2.1~3.3和5.8~9.0μm,NH_4~+呈双模态分布,优良日峰值出现在0.43~0.65μm和4.7~5.8μm,污染日3种二次离子峰值均以0.65~1.1μm的单模态分布为主,与三者之间的热动力平衡过程有关.细粒子中NH_4~+除与SO_4~(2-)和NO_3~-结合外,还与部分Cl~-结合,粗粒子中NH_4~+全部与NO_3~-和SO_4~(2-)结合后,剩余的NO_3~-和SO_4~(2-)与其他阳离子结合.  相似文献   
9.
采用2010~2013年BC连续在线观测资料,分析天津地区BC的季节分布、潜在来源及其健康效应.结果表明,2010~2013年BC气溶胶浓度平均值为(4.49±3.26)μg/m3,秋季浓度最高,为6.31μg/m3,冬季和夏季次之,春季最低,为2.59μg/m3.各季节BC浓度的日变化特征类似,均呈早晚双峰分布,早间峰值高于晚间,且夜间高于日间.混合层高度和近地层风从垂直和水平两方面影响BC的时空分布,各季节作用强度并不相同.浓度权重轨迹分析表明天津高浓度BC的主要贡献区域为河北、山东、河南等华北平原地区.此外,秋季内蒙古中部和山西北部等西北区域也会影响天津.天津城区各季节成人和儿童的致癌风险(CR)均高于EPA给定的可接受风险水平(10-6),非致癌风险水平较低,秋季因高浓度BC引发的呼吸系统死亡率相对风险为1.118,需要引起高度关注.  相似文献   
10.
基于天气背景天津大气污染输送特征分析   总被引:8,自引:7,他引:1       下载免费PDF全文
蔡子颖  杨旭  韩素芹  姚青  刘敬乐 《环境科学》2020,41(11):4855-4863
区域输送是大气污染防治中需要考虑的重要因素,本文利用大气化学模式定量估算2016年10月~2017年9月区域输送对天津的影响,重点基于天气背景分析区域输送影响和气象条件的关系,为京津冀地区大气污染联防联控提供支撑.结果表明,京津冀地区各城市区域输送贡献百分率平原城市显著高于沿山城市,天津一次PM2.5本地贡献62.9%,区域输送贡献37.1%,主要受沧州、廊坊、河北中南部、北京、唐山和山东等地输送影响,每年4~6月区域输送最显著,7~8月区域输送最弱.区域输送与天气形势、风场和降水等气象条件密切相关,高压后和锋前低压是区域输送占比最高的两种污染天气类型,西南风、西风和南风3个风向下天津大气污染输送影响最为明显,风速2~3 m ·s-1时最有利于PM2.5区域传输,降水超过5 mm以上将降低大气污染物区域传输效率.对于不同污染类型和重污染阶段,轻度污染天气时区域输送贡献最为明显,比均值偏高20.5%,重污染天气虽受静稳气团控制,但由于周边区域高浓度的PM2.5,污染气团迁移对区域内污染聚集传输有显著影响,重污染期间PM2.5输送贡献占比超过均值,约偏高10%~15%.重污染过程中,开始积累阶段和峰值阶段,输送贡献占比高于其它时期,与暴发阶段相比偏高14.5%和19.5%,重污染暴发阶段本地排放贡献更明显,比均值偏高9.9%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号