首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   11篇
  国内免费   44篇
安全科学   5篇
综合类   72篇
污染及防治   7篇
  2022年   5篇
  2021年   5篇
  2020年   4篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   7篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   7篇
  2007年   4篇
  2006年   9篇
  2004年   3篇
  2003年   8篇
  2001年   1篇
  2000年   1篇
  1995年   2篇
  1991年   2篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
1.
羊角月牙藻在制药废水毒性评价中的应用   总被引:1,自引:0,他引:1  
以羊角月牙藻(FACHB-271 Selenastrum capricornutum)作为测试生物,分别采用EC50(半数抑制浓度)、TUa(急性毒性单位)和LID(最低无效应稀释度)指标对某制药厂污水处理站4个工艺节点和总出水排放口的水样进行急性毒性效应评价. 结果表明:地下调节池(工艺节点①)水样EC50为15.12%±3.82%,TUa为6.6,LID为16,为极毒/中毒废水;地上调节池(工艺节点②)水样EC50为15.81%±1.04%,TUa为6.3,LID为16,为极毒/中毒废水;中间沉淀池(工艺节点③)水样EC50为62.12%±3.83%,TUa为1.6,LID为8,为中毒/低毒废水;二级沉淀池(工艺节点④)水样EC50为89.10%±1.43%,TUa为1.1,LID为4,为低毒废水;总出水排放口水样EC50>100%,TUa<1,LID为1,为无毒或微毒废水. 经过各污水处理工艺节点后,制药废水对羊角月牙藻的急性毒性逐级减弱,并且毒性指标与ρ(CODCr)具有较好的线性关系. 研究还发现,采用毒性指标LID表征该制药废水的生物毒性,对废水样品的毒性分辨能力更强.  相似文献   
2.
基于固相萃取-超高效液相色谱-两级串联质谱(SPE-UPLC/MS/MS)技术,建立了制药废水中头孢克洛、头孢曲松、头孢氨苄、头孢噻肟、头孢唑啉、头孢呋辛、头孢西丁、头孢噻吩和头孢拉定共9种头孢类抗生素的测试方法,定量限为27.5~131.8ng/L,目标物回收率为72.8%~102.2%;利用该技术,检测某采用两级生物氧化工艺的制药废水处理厂各级单元出水,共检测出头孢曲松、头孢唑啉、头孢噻肟和头孢呋辛4种头孢类抗生素,其在进水中平均浓度分别为7.6,12.9,5.6,91.6μg/L,在一级氧化出水中平均浓度分别为4.2,5.2,2.2,37.4μg/L,在二级氧化出水中平均浓度分别为2.0,2.7,0.6,24.4μg/L;风险商值法评估制药废水出水中残留的头孢曲松、头孢唑啉、头孢噻肟和头孢呋辛的环境风险均为高风险等级.  相似文献   
3.
热处理对猪粪高固厌氧消化产甲烷能力的影响   总被引:2,自引:2,他引:0  
畜禽粪便属于有机物含量高、卫生风险大的污染物.本研究探寻不同热处理时间下,猪粪(含固率27.6%)不稀释直接进行70℃热处理的情况及热处理对中温高固厌氧消化的影响.结果表明,热处理能够去除猪粪的部分有机物,并能明显提高高固厌氧消化的产甲烷能力和产甲烷速率.热处理时间为1、2、3和4 d时,热处理对猪粪的VS去除率分别为15.1%、15.5%、17.8%、20.0%,甲烷产率(以CH4/VSadd计)分别为284.4、296.3、309.2、264.4 m L·g-1,相比原粪的甲烷产率分别提高49.7%、55.9%、62.7%、39.2%.热处理时间为3 d时,猪粪的甲烷产率最高.热处理对猪粪产甲烷的促进效果显著,能耗适中,并能够起到巴氏消毒的作用,具有较好的工程价值.  相似文献   
4.
采用Fenton氧化法对青霉素和土霉素混合废水二级处理出水进行深度处理,通过正交和单因素实验研究了废水初始反应pH值、H2O2投加量、Fe2+/H2O2摩尔比及反应时间等因素对废水处理效果的影响。实验结果表明,Fenton氧化法处理的最佳反应条件为:初始pH值4、H2O2(30%)投加量50 mL/L、Fe2+/H2O2摩尔比1/20和反应时间60 min,处理后出水COD小于120 mg/L,COD去除率在75%以上,急性毒性(HgCl2毒性当量)小于0.07 mg/L,满足《发酵类制药工业水污染物排放标准》(GB21903-2008)表2标准要求。  相似文献   
5.
反硝化过程对于废水生物脱氮工艺的运行、土壤肥分的流失以及N2O的排放均具有重要意义,但参与反硝化过程的微生物种类繁多且多数不可培养,导致对自然环境中反硝化微生物的种群结构及功能的研究具有很大难度.现代非培养分子技术的发展使得对反硝化微生物进行原位、准确、全面的研究成为可能.对反硝化功能基因进行指纹图谱分析、定量PCR或者利用FISH等技术可以有效确定反硝化菌的组成和数量,通过检测反硝化酶和mRNA可将反硝化菌的种群鉴定与代谢活性联系起来,最近新出现的同位素底物标记技术甚至可直接确定反硝化菌的碳源利用情况.重点介绍了上述各种现代非培养技术对反硝化细菌种群结构和功能的研究现状,以期为深入了解反硝化微生物的多样性和功能特性提供参考.  相似文献   
6.
通过动力学调控在单一反应器内实现了亚硝化到硝化再到亚硝化过程的转化.在小试曝气上流式污泥床(Aerated Upflow Sludge Bed,AUSB)反应器中,在20℃、DO为2~4mg·L-1的条件下,主要通过调节反应器内的pH值调控氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)比生长速率的相对大小,以无机自配水为进水时,分别在20d和25d内将反应器的亚硝化率(出水中亚硝氮与总硝态氮之比)从95%降低至15%再恢复至95%以上,期间反应器的氨氮去除率基本维持在90%以上;当以实际高氨氮废水为进水时,同样主要通过调节反应器的pH值,分别在30d和23d内实现了反应器的亚硝化率从90%降低至10%再恢复至90%的过程.  相似文献   
7.
中温和高温厌氧生物产氢反应器连续运行的研究   总被引:4,自引:2,他引:2  
采用2个厌氧生物产氢反应器分别在中温(37℃)和高温(55℃)下连续运行.以河底沉积物接种,葡萄糖为基质,在CSTR中成功实现了连续中温厌氧产氢,最高产氢量达8.6L/(L·d),基质产氢摩尔比(H2/葡萄糖)为1.98.以厌氧产甲烷颗粒污泥接种,蔗糖为基质,在UASB反应器中成功实现了连续高温厌氧产氢过程,最高产氢量达6.8L/(L·d),基质产氢摩尔比(H2/蔗糖)为3.6.在高温UASB反应器中培养获得了灰白色的产氢颗粒污泥,平均粒径为0.8~1.2mm,沉速为30~40m/h,电镜观察发现其表层生长大量杆状细菌.对2种产氢污泥的总DNA进行提取和纯化,通过PCR扩增和DGGE分析,发现高温和中温厌氧产氢污泥中的大部分真细菌种类相同,但各自的优势菌种明显不同.  相似文献   
8.
温度、pH值和有机物对厌氧氨氧化污泥活性的影响   总被引:62,自引:16,他引:46  
杨洋  左剑恶  沈平  顾夏声 《环境科学》2006,27(4):691-695
通过厌氧氨氧化速率的测定研究了温度、pH值和有机物对厌氧氨氧化污泥活性的影响.结果表明:温度和pH值对污泥的厌氧氨氧化活性有明显影响,最佳温度为30~35℃,在20~30℃之间,厌氧氨氧化速率与温度之间的关系可以用修正的Arrhenius方程式描述;最佳pH值为7.5~8.3,在pH值为7.0~9.0之间,厌氧氨氧化速率与pH值之间的关系可以用双底物双抑制剂模型描述;厌氧氨氧化污泥中存在着异养反硝化菌,有机物的存在会导致其与厌氧氨氧化菌之间的基质竞争.  相似文献   
9.
高效厌氧产甲烷颗粒污泥中微生物多样性及定量化研究   总被引:4,自引:4,他引:0  
孙寓姣  左剑恶  邢薇  李建平  鲁颐琼 《环境科学》2006,27(11):2354-2357
以小试高效厌氧反应器不同运行阶段的颗粒污泥为对象,利用变性梯度凝胶电泳(DGGE)、荧光原位杂交(FISH)和实时定量链式聚合酶反应(RTQ-PCR)等技术研究了其中微生物种群的多样性、特征微生物的空间分布和定量关系,结果表明:随着反应器有机负荷逐渐提高,颗粒污泥中古菌的群落结构的变化较细菌更为明显;细菌多分布在颗粒外层,而古菌则主要分布在颗粒内层;古菌含量略少于细菌,但有逐渐增多的趋势;产甲烷丝菌在古菌中的含量增加明显.  相似文献   
10.
好氧亚硝化颗粒污泥特性的研究   总被引:6,自引:4,他引:2  
对在小试曝气上流式污泥床反应器中成功培养出的好氧亚硝化颗粒污泥的特性进行了研究.工艺稳定运行时,亚硝化颗粒污泥的VSS/SS稳定在80%左右,粒径大于1.0 mm的颗粒污泥约占总数的70%,粒径大于0.8 mm的颗粒污泥的湿密度约为1?022 kg/m3.荧光原位杂交结果表明,亚硝化细菌主要分布在颗粒污泥的表层,而硝化细菌则分布在表层之下;最大可能数结果显示,亚硝化工艺稳定运行时亚硝化细菌的数量远多于硝化细菌,甚至可高于硝化细菌4个数量级以上.上述结果表明,硝化细菌(AOB和NOB)以接种的产甲烷颗粒污泥或其碎片为载体,通过在其表层附着生长,最终形成好氧亚硝化颗粒污泥.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号