首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   5篇
综合类   11篇
基础理论   1篇
评价与监测   1篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
为量化秸秆打包政策对防控大气污染的影响,基于吉林省2016年秸秆产量、秸秆打包地亩数、卫星火点数据以及大气污染物浓度的变化,对吉林省秸秆打包产生的大气环境及社会经济效益进行了分析,结果表明:1)吉林省打包秸秆量为220.36×10~4t,约占秸秆年产量的5.5%,假如全部加工成生物质颗粒燃料,2016年至少减少14.54×10~4t污染物排放;2)吉林省秸秆打包政策执行以来,秸秆露天燃烧量及秸秆燃烧主要月份的卫星火点数显著下降;3)随着露天燃烧量的减少,区域大气颗粒物浓度降低,空气质量改善。秸秆燃烧主要月份的PM_(2.5)和PM_(10)浓度从2014年的104.5μg·m~(-3)、164μg·m~(-3)分别下降到2016年的48.5μg·m~(-3)、69·μg·m~(-3)。研究结果可为吉林省有效减少污染物排放、综合利用农作物秸秆、改善大气环境质量等提供科技支撑。  相似文献   
2.
为探究长春秋季生物质燃烧对PM_(2.5)中水溶性有机碳(water-soluble organic carbon,WSOC)吸光性的影响,于2017年10~11月进行PM_(2.5)样品采集,对PM_(2.5)中碳质组分、糖类化合物和WSOC的光吸收特征参数进行分析.研究表明:长春秋季PM_(2.5)中WSOC、有机碳(organic carbon,OC)、元素碳(elemental carbon,EC)的平均浓度分别为(10.12±3.47)、(17.07±5.64)和(1.34±0.75)μg·m~(-3),二次有机碳(secondary organic carbon,SOC)对OC的平均贡献率为38.93%.长春秋季总糖浓度为(1 049.39±958.85)ng·m~(-3),其中作为生物质燃烧示踪剂的脱水糖含量(左旋葡聚糖、半乳聚糖和甘露聚糖)在总糖中占比为91.69%,糖类相关性分析结果显示生物质燃烧源为长春秋季大气中糖类物质的主要贡献源.糖类物质的相关性分析及3种脱水糖的特征比值研究显示,作为长春秋季大气主要污染源的生物质燃烧的类型是硬木和作物残渣的燃烧.长春秋季WSOC的光吸收波长指数(AAE)为5.75±1.06,单位质量吸收效率(MAE)为(1.23±0.28)m~2·g~(-1),表明生物质燃烧对WSOC吸光性具有重要影响.利用生物质燃烧特征源参数量化计算生物质燃烧对WSOC浓度的贡献达58.82%,对总WSOC光吸收的贡献达40.92%.  相似文献   
3.
东北区域空气质量时空分布特征及重度污染成因分析   总被引:3,自引:2,他引:1  
东北已成为我国又一个霾污染多发和重发区域.采用2013~2017年东北区域大气污染物地面监测数据、卫星数据和气象数据等信息,探讨了中国东北地区空气质量时空分布特征与重度污染成因.结果表明,"沈阳-长春-哈尔滨"带状城市群是全年污染最严重的区域,空气质量指数(AQI)的空间分布具有明显的季节性,冬季污染最严重,春季吉林省西部周围为椭圆形污染区,夏季和秋季大部分时间空气质量最佳.3个典型的霾污染时期是10月下旬和11月上旬(即秋末和初冬,时期一),12月下旬和1月(即冬季最冷的时候,时期二),及4月到5月中旬(即春季沙尘和农业耕作期).时期一,季节性作物残茬焚烧和冬季采暖用煤燃烧产生的PM_(2.5)强排放是极端霾事件发生的主要原因(AQI 300);时期二,在最严寒月份里,重度霾污染事件(200 AQI 300),主要由燃煤和汽车燃料消耗的PM_(2.5)排放量高,大气边界层较低,以及大气扩散性差等共同引起;时期三,春季PM_(10)浓度较高,主要是由内蒙古中部退化草原的风沙和吉林省西部裸地的区域性扬尘传输造成的.同时,当地农业耕作本身也释放PM_(10),并提升了裸土的人为源矿物尘的排放强度.  相似文献   
4.
长春秋季细颗粒物中有机气溶胶组成特征及来源   总被引:2,自引:0,他引:2  
利用大流量采样器采集了长春城郊2016年10月至2016年11月大气细颗粒物(PM_(2.5))样品共40套,分析了颗粒物中的有机碳(OC)、元素碳(EC)以及非极性有机化合物(主要包括正构烷烃、多环芳烃以及藿烷类化合物)和生物质燃烧标志物左旋葡聚糖的质量浓度,并用分子标记物、特征比值及主成分分析-多元线性回归(PCA-MLR)模型等方法探讨了有机气溶胶的主要来源.结果表明,观测期间PM_(2.5)的平均质量浓度为(79. 0±55. 7)μg·m~(-3),OC和EC的平均质量浓度分别为(20. 7±15. 6)μg·m~(-3)和(2. 2±1. 1)μg·m~(-3),分别占PM_(2.5)的26. 2%和2. 8%.所测非极性有机化合物的总平均浓度为(186. 3±104. 5) ng·m~(-3),浓度高低顺序为正构烷烃[(101. 3±67. 0) ng·m~(-3)]多环芳烃[(81. 4±46. 0) ng·m~(-3)]藿烷类化合物[(3. 8±1. 9) ng·m~(-3),其主要来源包括煤燃烧源、生物质燃烧源以及交通源.主成分分析-多元线性回归模型得出该地区有机气溶胶主要排放源的相对贡献依次是煤燃烧源(47. 0%)、生物质燃烧源(42. 6%)和交通源(10. 4%).本研究结果可为我国东北地区有机气溶胶污染防控提供科学依据.  相似文献   
5.
采用自下而上的四种不同清单编制方法(以人口、就餐次数、用油量和灶头为核算基准),评估了长春市辖区2014年不同餐饮活动(家庭餐饮、社会餐饮和食堂餐饮)的大气污染物PM2.5和VOCS的排放量,编制了餐饮源大气污染物PM2.5和挥发性有机物(VOCS)排放清单,并分析了餐饮源排放的时空分布特征.结果表明:2014年长春市辖区餐饮源PM2.5总排放量183~770t,VOCS总排放量9~586t;长春市辖区餐饮源PM2.5和VOCS的最大排放源是家庭餐饮,其贡献率分别为74%~81%和28%~78%,食堂餐饮的贡献率分别为8%~22%和3%~26%,社会餐饮的贡献率分别为2%~17%和2%~69%;排放强度空间分布表明,长春市辖区餐饮源污染物在排放区域上:朝阳区 > 南关区 > 绿园区 > 二道区 > 宽城区 > 双阳区;时间变化特征显示,日变化峰值为07:00~08:00,11:30~12:30,18:00~20:00;周变化中周三、周六和周日排放量较大;季节变化中,冬季排放强度高于其他季节,其中十二月份贡献率最大(9.98%);不同方法计算的大气污染物排放清单中,以人口为基准的不确定性最大,VOCS的不确定性为302%,以用油量为基准的不确定性最小,PM2.5和VOCS的不确定性分别为31%和61%,可以作为区域餐饮源大气污染物清单推荐方法.未来的工作将侧重于典型餐饮源本地排放因子的测定,从而有效减少排放清单的不确定性.  相似文献   
6.
制备了一种矿物基多孔颗粒吸附材料(MPGM),用于净化富含重金属离子的石英纯化废水.通过BET、SEM及FT-IR等技术分析表明,MPGM具有多孔径分布、大比表面积、低散失率等优良特性;N2吸附-脱附等温线为Ⅲ型,且存在H4型回滞环;官能团以层状硅酸盐矿物的基团为主.研究了吸附剂用量、初始p H值及时间对MPGM吸附Fe、Zn、Mn、As的影响,结果表明,4种金属离子浓度分别由77.760、3.700、2.789和0.963 mg·L-1吸附净化为3.421、0.574、0.126和0.034mg·L-1.对使用过的吸附材料利用1.0 mol·L-1的Na Cl脱附12 h,重复利用5次后仍维持理想的吸附水平.吸附机制研究表明,吸附体系均符合Langmuir吸附等温线模型及准一级动力学模型/准二级动力学模型;ΔGθ0、ΔHθ0、ΔSθ0,说明吸附过程为吸热反应,且在15~45℃温度下有利于反应顺利自发进行.  相似文献   
7.
利用2015—2017年春节期间东北地区主要大气污染物(PM_(10)、PM_(2.5)、SO_2、NO_2、CO和O3)质量浓度监测资料及相应气象因子(温度、湿度、风速和气压)观测资料,分析了春节期间烟花爆竹禁燃对东北地区空气质量的影响。结果表明:随着东北地区主要城市禁燃力度的增强,空气质量逐年提升,PM_(2.5)和SO_2浓度逐年大幅度下降。禁燃可明显降低城区PM_(2.5)浓度,而由于春节期间污染源整体减少,城区和城郊监测点PM_(2.5)浓度值差异减小。烟花爆竹对PM_(10)和PM_(2.5)浓度影响高于对气体污染物SO_2、NO_2和CO的影响。此外,气象条件对东北地区春节期间禁燃改善空气质量的效果也有明显影响。因此,结合春节期间的气象条件,在东北地区实施禁燃政策动态调整非常必要。  相似文献   
8.
通过对2013年10月东北三江平原农作物收获期大气颗粒物的在线监测,结合卫星火点数据与后向轨迹模拟,分析了秸秆燃烧和作物收割等农业活动对大气颗粒物质量浓度及粒径分布的影响.结果表明:作物收获前期、中期和后期大气PM2.5的平均质量浓度分别为36.0,158.3,33.8μg/m3;现场观测表明,水稻收割(321.1μg/m3)和秸秆燃烧(2777.1μg/m3)时监测田块内PM2.5的平均浓度分别是收割前和燃烧前平均浓度的2.5倍和11.5倍;卫星火点及后向轨迹分析发现,观测期间PM2.5与该地区卫星火点数量的变化趋势比较一致,且气团轨迹经过火点较集中区域时测得较高的PM2.5浓度值;对不同粒径(1μm,1~2.5μm,2.5~10μm)大气颗粒物质量浓度的观测表明,收获中期受大面积秸秆燃烧的影响,0~1μm粒径组分明显增加,而收获后期由于降水过程对0~1μm粒径颗粒物的清除效率较低,故该粒径颗粒物仍维持较高比例.  相似文献   
9.
长春市大气SO2、O3和NOx的变化特征及来源   总被引:2,自引:0,他引:2  
为研究长春市采暖期大气污染物的污染水平及其随时间的变化特征,于2012年1—6月通过在线监测仪获取了大气中ρ(SO2)、ρ(O3)和ρ(NOx),利用HYSPLIT(混合型单粒子拉格朗日综合轨迹模式)后向轨迹模型结合地面气象资料,初步分析了该市大气污染物的可能来源及传输过程.结果表明:观测期间ρ(SO2)和ρ(NOx)的日均值分别为(25.0±21.6)和(54.4±34.0)μg/m3,ρ(O3)最大8 h平均值为(85.0±26.2)μg/m3,ρ(SO2)、ρ(NOx)和ρ(O3)的变化范围分别为2.3~131.0、17.6~183.7和31.0~173.3μg/m3;其中ρ(O3)日均值超过GB 3095—2012《环境空气质量标准》二级标准限值的时间为2 d,ρ(SO2)和ρ(NOx)均未超过二级标准限值,但ρ(SO2)日均值在采暖期超过GB 3095—2012一级标准限值的时间为23 d,占采暖期的24%.采暖期ρ(SO2)日变化为双峰型,峰值出现在06:00和20:00左右,而在非采暖期表现为单峰型,峰值出现在08:00左右;ρ(O3)表现为单峰型,峰值出现在13:00─15:00;ρ(NOx)在采暖期表现为双峰型,而在非采暖期表现为单峰型.对观测期间72 h内HYSPLIT后向轨迹模拟结果和气象数据的分析表明,长春市大气污染主要受本地源的影响,偏西气流易对污染物造成积累,而偏东气流有利于污染物扩散.  相似文献   
10.
2014年在吉林市设立7个大气PM_(2.5)采样点,分采暖季和非采暖季分别采样分析了吉林市城区大气颗粒物污染特征和可能来源。结果表明:吉林市大气颗粒物以PM_(2.5)为主,PM_(2.5)年均值65μg/m3,超过国家二级标准限值86%,PM_(2.5)/PM10的年平均值为61%;PM_(2.5)中,休闲生活区各个时间段金属元素浓度相对较低,工业混合区浓度较高;非金属离子SO2-4、NH+4、NO-3、Cl-是PM_(2.5)水溶性离子的主要成份,其和占PM_(2.5)质量的13.31%,在采暖期浓度质量全部高于非采暖期;采暖期OC和EC来源基本相同,来源于机动车尾气、燃煤和生物质燃烧等,在非采暖期OC和EC来源差异性较大,主要来源于机动车尾气和工业燃煤等。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号