首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   4篇
综合类   5篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
小型池塘水-气界面CH4冒泡通量的观测   总被引:3,自引:2,他引:1       下载免费PDF全文
为了量化亚热带浅水养殖塘CH_4冒泡通量占CH_4总通量的比例,选取安徽省全椒县两个小型池塘为研究对象,采用倒置漏斗法和顶空平衡法,自2016年7月28日至8月13日观测夏季水-气界面的CH_4通量.结果表明,两个池塘CH_4冒泡通量分别是121.78 mg·(m~2·d)~(-1)和161.08 mg·(m~2·d)~(-1),CH_4扩散通量分别是3.38 mg·(m~2·d)~(-1)和3.79 mg·(m~2·d)~(-1),CH_4冒泡通量占总通量比例分别是97.5%和96.4%.CH_4冒泡通量具有高度空间异质性,A塘CH_4冒泡通量的变化范围为0.11~446.90 mg·(m~2·d)~(-1),B塘CH_4冒泡通量变化范围为0.05~607.51 mg·(m~2·d)~(-1).两个池塘的气体冒泡速率都是白天高于夜间,主要受风速控制.对于较浅的池塘,在小时尺度上,CH_4冒泡通量的主要影响因素是风速;在日尺度上,CH_4冒泡通量的主要影响因素是风速和水深,其中CH_4冒泡通量与风速呈正相关关系,与水深呈负相关关系.不同纬度的水体CH_4冒泡通量不同,中纬度地区的淡水环境比高纬度地区CH_4冒泡通量更高.通过观测手段量化小型浅水池塘CH_4冒泡通量,可以为准确估算内陆水体对区域和全球碳循环的贡献提供数据支持和理论参考.  相似文献   
2.
小型池塘作为内陆水体的一部分,是被忽视的温室气体重要排放源.本研究主要利用通量-梯度方法测量长江三角洲地区的一处小型池塘水-气界面温室气体(CO_2和CH_4)交换通量.结果表明:1零梯度测试结果显示本套通量-梯度系统测量H_2O、CO_2和CH_4通量的精度分别为7.525 W·m-2、0.022 mg·(m2·s)-1、0.054μg·(m2·s)-1,并且在正常实验观测期间3种气体(H_2O、CO_2和CH_4)的通量值分别有84%、80%和94%的结果高于零梯度测试精度,以上结果可以保证本套通量-梯度系统具有足够的精度测量池塘水-气界面温室气体交换通量;2通量-梯度计算结果表明此小型池塘在夏季为CO_2和CH_4的排放源,其排放通量平均值分别为0.038 mg·(m2·s)-1和0.889μg·(m2·s)-1,其中CH_4排放通量远高于内陆湖泊甲烷排放通量的中值,说明小型池塘的温室气体排放量是估算内陆水体温室气体排放量特别是CH_4排放量中不可忽视的重要量值,本研究结果可为准确估算区域温室气体排放量提供科学参考.  相似文献   
3.
城市是CO2重要排放源,直接观测城市中大气CO2浓度对于研究人类活动对大气温室气体的贡献至关重要,而在城市中多个站点、多个高度上观测大气CO2浓度则有助于认识城市CO2浓度的时空变化规律,确定其影响机制.本研究于2014年7月18日至7月25日在南京主城区东、西、南、北和中共5个方位(100 m左右高度),2014年8月3日至2014年8月9日在南京主城区中部站点的3个高度(30、65和110 m)观测CO2浓度.结果表明:1南京主城区垂直方向上CO2浓度存在明显梯度,近地面30 m处CO2浓度受人为活动影响明显,平均值达427.3×10-6(±18.2×10-6)(摩尔分数,下同),高层65m、110 m处CO2浓度混合均匀,平均值分别为411.8×10-6(±15.0×10-6)和410.9×10-6(±14.6×10-6).大气层结越稳定,CO2浓度越高,垂直梯度越大.2南京主城区CO2浓度的水平分布受风和大气稳定度的控制.观测期间盛行东北风向,导致CO2浓度分布整体呈现西南高,东北低的格局,城市主城区上下风向CO2浓度差为7.8×10-6.而且水平风速越大,越有助于将上风向的CO2传输至城市的下风向,CO2浓度差就越小.大气层结越稳定,整体CO2浓度越高.3南京主城区5个站点CO2浓度均有明显的日变化,日最高值出现在交通早高峰期间,谷值在17:00左右,在19:00左右有时会因交通晚高峰而出现次高值.  相似文献   
4.
本研究基于多通道密闭式动态箱法对亚热带典型养殖塘CH4通量的时空变化特征及其影响因素进行了分析.结果表明:亚热带养殖塘CH4主要排放方式是冒泡,CH4扩散及冒泡通量均呈现明显的季节变化特征.春、夏、秋、冬4个季节CH4扩散通量分别为:0.113,0.830,0.002,0.005μmol/(m2·s),冒泡通量分别为0.923,1.789,0.006,0.007μmol/(m2·s),冒泡通量占总通量的比例分别为89.04%、68.29%、78.95%和60.52%.在冬、春季养殖塘没有人工管理措施的情况下,CH4通量随着离岸距离的增加而增大,冬、春季养殖塘中间区域CH4总通量分别是岸边浅水区的34.70和2.98倍.夏季养殖活跃期CH4通量在空间上呈现出:人工投食区(7.371μmol/(m2·s))>自然生长区(2.151μmol/(m2·s))>人工增氧区(0.888μmol/(m2·s))>岸边浅水区(0.206μmol/(m2·s))的特征.在0.5h尺度上,春季CH4扩散通量与水温呈显著正相关关系,与风速呈负相关关系,秋季CH4扩散通量与水温、风速呈正相关关系,冒泡通量和水温呈正相关关系.在日尺度上,水温是CH4扩散通量和冒泡通量的主控因子,两者均随着水温升高呈指数增加,并且冒泡通量的水温敏感性Q10(12.72)大于扩散通量(7.78).  相似文献   
5.
城市交通是CH_4等温室气体的重要排放源,而CH_4排放的观测研究是定量分析城市碳排放的基础.本项研究考虑城市交通的周变化和日变化特点,于2014年10月17日、18日、20日、23日每日5个时段在南京市主城区三条交通主干道上和2015年9月11日的早晚时段在南京长江隧道内,观测大气CH_4和CO_2浓度,分析交通CH_4排放特征及其影响因素.结果表明:1南京城区交通主干道的CH_4平均浓度均大于背景大气CH_4浓度.受交通车流量的影响,ΔCH_4浓度的空间差异显著.ΔCH_4浓度的日变化呈现倒"W"型,在交通早晚高峰时出现峰值.2由于隧道内"活塞风"的作用,长江隧道内的CH_4浓度从入口到出口逐渐增大,出入口浓度差在0.21×10-6~0.38×10-6(摩尔分数,下同)之间.3大气CH_4浓度与CO_2浓度之间线性相关.交通主干道上的ΔCH_4∶ΔCO_2值平均为0.009 1;隧道内的ΔCH_4∶ΔCO_2值仅为0.000 47~0.001 4.4影响南京城区道路大气ΔCH_4浓度和ΔCH_4∶ΔCO_2值的主要因素分别是车流量和天然气车占车流量的比例.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号