首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   3篇
  国内免费   14篇
综合类   24篇
基础理论   1篇
灾害及防治   1篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
张彦军  郭胜利 《环境科学》2019,40(3):1446-1456
在田间条件下研究土壤微生物呼吸及其温度敏感性(Q10)的变化特征及其影响因素对准确理解地区的气候变暖潜力具有重要意义.本研究依托长武农田生态试验站的裸地处理,利用土壤碳通量系统(Li~8100)连续6 a (2008~2013年)监测裸地处理下的呼吸速率、土壤温度和水分,探究土壤微生物呼吸及其温度敏感性的变化特征及其影响因素.在日变化尺度上,土壤微生物呼吸速率的变化特征呈单峰曲线,且这种变化趋势主要与土壤温度有关(P 0. 05),然而日平均土壤微生物呼吸速率和Q10在不同土壤水分含量条件下不同.均呈现出:适度的土壤水分条件较高的土壤水分条件较低土壤水分条件的趋势[土壤微生物呼吸速率:1. 20μmol·(m~2·s)~(-1)、0. 95μmol·(m~2·s)~(-1)、0. 79μmol·(m~2·s)~(-1); Q10:2. 12、1. 93、1. 59].在季节尺度上,土壤微生物呼吸速率和Q10均呈现出雨季大于非雨季的趋势[土壤微生物呼吸速率:1. 11μmol·(m~2·s)~(-1)、0. 90μmol·(m~2·s)~(-1); Q10:1. 96、1. 59],且这种变化趋势与土壤温度和水分的变化有关(P 0. 05),然而土壤温度和土壤水分的双变量模型比土壤温度或者土壤水分的单变量模型能解释更多的土壤微生物呼吸季节变异性(R~2:0. 45~0. 82、0. 32~0. 67、0. 35~0. 86;模拟值和实测值的拟合系数:0. 76、0. 64、0. 58).在年际尺度上,年累积土壤微生物呼吸变化于226 g·(m~2·a)~(-1)和298 g·(m~2·a)~(-1)之间,Q10变化于1. 48~1. 94之间,而年累积土壤微生物呼吸和Q10的年际变异性主要与年平均土壤水分含量有关(P 0. 05),且年平均土壤水分别可以解释39%和54%的年累积土壤微生物呼吸和Q10年际变异性.在裸地处理上,土壤有机碳由试验初的6. 5 g·kg~(-1)下降到目前的5. 5 g·kg~(-1),但是年累积土壤微生物呼吸却高达255 g·(m~2·a)~(-1),即裸地处理的呼吸流失量比土壤有机碳的流失量高20倍以上.  相似文献   
2.
本文阐述了县(区)环境经济规划编制中应坚持的基本原则,在可持续发展指导下,达到经济、社会、环境三个效益相统一。  相似文献   
3.
基于Meta分析的土壤呼吸对凋落物输入的响应   总被引:1,自引:0,他引:1  
凋落物输入是影响土壤呼吸的一个重要因素,然而从国内外目前研究结果来看,土壤呼吸响应凋落物输入的影响因素尚不清楚。利用国内外已发表的30篇研究论文共1393对有效数据,通过Meta分析,从凋落物管理措施、气候、植被、地形、土壤理化性质等因素揭示凋落物输入对土壤呼吸的影响程度。研究发现:与清除凋落物处理相比较而言,(1)凋落物输入后显著增加了土壤呼吸,且土壤呼吸的增加程度呈现出倍增凋落物处理是自然凋落物处理的1.33倍;(2)不同气候条件下的土壤呼吸增加程度呈现出强降雨(>1000 mm)是微弱降雨(<1000 mm)的1.34倍,以及高温气候(>20℃)是低温气候(<20℃)的1.7倍;(3)土壤呼吸的增加程度在不同植被带下呈现出针叶林带(34.1%)>阔叶林带(28%)>混交林带(22%)>草地(17.3%)的趋势;(4)不同海拔梯度条件下土壤呼吸的增加程度呈现出高海拔(59.6%)>中海拔(34.2%)>低海拔(26.7%)的趋势;(5)不同土壤理化性质条件下的土壤呼吸增量呈现出低容重(77.5%)分别是中容重(26.9%)和高容重(18.0%)的2.9倍和4.3倍,同时中性土壤(79.6%)的呼吸增量远远大于酸性(28.2%)和碱性(24.1%)土壤的呼吸增量,以及高土壤碳氮比(81.2%)的土壤呼吸增量远远大于低土壤碳氮比(19.4%)和中土壤碳氮比(29.6%)的土壤呼吸增量。由此可见,凋落物输入后会导致土壤呼吸的显著增加,但是不同气候、不同植被、不同地形、不同土壤理化性质等条件下其土壤呼吸增加的幅度不同。  相似文献   
4.
目的明确净水剂、絮凝剂、助凝剂、缓蚀剂对污水处理系统腐蚀行为的作用效果。方法通过工艺流程分析、腐蚀形貌观察、腐蚀产物成分分析、腐蚀失重测试等手段,分析污水处理系统腐蚀原因,考察油田化学添加剂对SSF污水处理系统腐蚀行为的影响。结果输送介质中溶解的二氧化碳、高浓度氯离子、氧是导致SSF净化装置内腐蚀的主要原因。分别添加质量浓度为150、0.3、60 mg/L的净水剂、絮凝剂、助凝剂后,动态腐蚀速率可从1.8544 mm/a降到0.6674、0.8627、0.3530 mm/a,静态腐蚀速率可从1.2515 mm/a降到0.9565、0.9474、0.6256 mm/a。添加160 mg/L缓蚀剂,动态腐蚀速率从1.8544 mm/a降低到0.0822 mm/a,静态腐蚀速率从1.2515 mm/a降低到0.0238 mm/a。同时添加净水剂、絮凝剂、助凝剂三种药剂,动态腐蚀速率为0.7672 mm/a,静态腐蚀速率为0.8742 mm/a;同时添加净水剂、絮凝剂、助凝剂、缓蚀剂四种药剂,动态腐蚀速率为0.3069 mm/a,静态腐蚀速率为0.0263 mm/a。结论添加缓蚀剂能有效控制SSF污水处理系统内腐蚀。污水处理用净水剂、絮凝剂、助凝剂对腐蚀有一定抑制作用。在动态条件下,净水剂、絮凝剂、助凝剂降低了缓蚀剂的缓蚀效果,在静态条件下,三种添加剂对缓蚀剂的缓蚀效果影响较小。  相似文献   
5.
在地形条件复杂的地区,量化根系对土壤有机碳的贡献对科学评价水土流失区的土壤碳储量具有重要意义。本研究在黄土高原丘陵沟壑区的砖窑沟小流域内,基于地貌类型(梁茆坡、沟坡和沟谷)和植被措施(农田、林地和草地措施)两大因素采集土壤和根系样品,在流域尺度上研究根系密度(FRD)对土壤有机碳密度(SOCD)的贡献。在砖窑沟小流域内,地形、植被措施和土层厚度及其交互作用显著影响SOCD和FRD的空间分布。SOCD和FRD在不同地形部位下均呈现出沟谷沟坡梁茆坡的趋势,在不同植被措施下均呈现出林地措施草地措施农田措施的趋势,在不同土层厚度上均呈现出表层(0~20 cm)大于下层(20~100 cm)的趋势。此外,FRD对SOCD的影响显著(P0.05),SOCD随着FRD增加呈现出对数增加的趋势,且不同地形和植被措施下的根系-碳转化效率差异显著(P0.05)。在农田措施下,沟谷(0.87)的根系-碳转化效率均是沟坡(0.43)和梁茆坡(0.43)的2.0倍;在草地措施下,沟坡(0.57)的根系-碳转化效率分别沟谷(0.45)和梁茆坡(0.27)的1.3倍和2.1倍;在林地措施下,梁茆坡(0.56)的根系-碳转化效率是沟坡(0.44)的1.3倍。因此,在砖窑沟小流域内,从增加根系-碳转化效率的角度而言,沟谷适合进行农业生产,沟坡适宜进行退耕还草,而梁茆坡适合进行退耕还林。  相似文献   
6.
青海乐都县30a来农田表层土壤有机碳储量变化特征   总被引:1,自引:0,他引:1  
青海省地处高寒区,近几十年来针对这一区域农田生态系统中土壤有机碳(SOC)库变化及其影响因素的研究较少。研究利用第二次土壤普查数据(1982年),结合近期(2011年)重复采集的田间土壤样品,以土壤类型为单元,对县域尺度(青海乐都县)农田表层(0~20 cm)SOC库的时空变化特征进行分析。结果表明:1乐都县1982年表层有机碳密度(SOCD)为3.8kg·m-2,2011年降低至2.8 kg·m-2,30 a间降幅达26%,且呈东北部和南部降低、西北地区增加的趋势;2乐都县1982年表层SOC储量1.8×106t,2011年1.4×106t,30 a间降幅达24%;3土壤类型中,草甸土、栗钙土和黑钙土表现为丢碳,速率分别为-137.3、-35.0、-91.0 g C·m-2·a-1,潮土和灰钙土表现为固碳,速率分别为9.7、7.3 g C·m-2·a-1,且30 a来各土类SOCD变化率与1982年SOCD呈负线性相关(y=0.35-0.13x)。  相似文献   
7.
苹果园土壤呼吸的变化及生物和非生物因素的影响   总被引:1,自引:1,他引:0  
了解果园土壤呼吸变化及其影响因素,有利于深入理解退耕还果条件下黄土高原地区土壤碳源汇功能.在长武农田生态系统国家野外站,以盛产期果园(2000年建成)为对象,利用土壤碳通量测量系统(Li-COR,Lincoln,NE,USA)于2011、2012年监测了果树冠幅下距树干不同距离处土壤呼吸、土壤水分和温度变化,分析了土壤呼吸的时空变化及其影响因素.结果表明:①土壤呼吸速率随着距树干距离延长而降低.与2 m处相比,0.5 m处土壤累积呼吸量2011年提高20%,2012年提高31%;0.5 m和2 m处土壤呼吸的温度敏感性(Q10)2011年相应依次为1.79和1.56,2012年依次为1.79和1.38.②距树干2 m处温度和水分稍高于0.5 m处,但差异不显著(P>0.05).土壤呼吸与土壤温度均呈显著的指数关系,而与土壤水分的相关性不显著.温度变化可解释土壤呼吸的季节性变化,但并不能解释距离树干不同处的差异.③距离树干不同位置处的根系密度差异是影响果园土壤呼吸空间变化及其温度敏感性的重要生物因素;④冠幅下土壤呼吸的变异系数为23%~31%.估算果园土壤呼吸需考虑其距离树干的空间差异性.  相似文献   
8.
凋落物呼吸温度敏感性的变化特征及其影响因素   总被引:1,自引:1,他引:0  
张彦军 《环境科学》2017,38(8):3497-3506
地表凋落物呼吸是土壤呼吸的一个重要组成部分,研究凋落物呼吸温度敏感性的变化特征及其影响因素对准确理解地区的土壤碳循环具有重要意义.本研究在黄土高原南部的一个典型人工刺槐林内(Robinia pseudoacacia L.),通过地表凋落物控制试验(对照处理,去除凋落物处理、倍增凋落物处理),研究凋落物呼吸温度敏感性的年际(2009~2013年)变化特征及其驱动因素.凋落物呼吸温度敏感性的年际差异显著(P0.05):在对照处理下,其最小值为4.15,最大值为6.67,均值为5.10,变异系数为19%;在倍增凋落物处理下,其变化于1.17~6.52之间,均值为3.36,变异系数高达56%.凋落物呼吸温度敏感性的年际变异与年平均土壤水分、地表凋落物量以及二者的交互作用密切相关(P0.01),同时对凋落物呼吸温度敏感性的贡献呈现出土壤水分大于地表凋落物量的趋势(对照处理:2.68和2.04;倍增凋落物处理:1.37和0.69).此外,地表凋落物倍增后,凋落物呼吸温度敏感性却减少了34%(3.36和5.10).同时,在对照处理下,大约有超过50%的地表凋落物碳滞留在该刺槐林生态系统中[215 g·(m~2·a)~(-1)和113 g·(m~2·a)~(-1)],但在倍增处理下,仅有24%的地表凋落物碳滞留在该林地生态系统中[430 g·(m~2·a)~(-1)和326 g·(m~2·a)~(-1)],即在该人工刺槐林生态系统中地表凋落物的增加未必意味着土壤有机碳储量的增加.因此,探究地表凋落物控制措施、土壤水分、地表凋落物量和凋落物呼吸温度敏感性之间的关系对准确理解地区的土壤碳循环具有重要意义.  相似文献   
9.
黄土区果园和刺槐林生态系统土壤有机碳变化及影响因素   总被引:1,自引:0,他引:1  
果园和刺槐是黄土区小流域综合治理中两种典型土地利用方式,对比分析二者土壤固碳功能变化有助于深入了解小流域综合治理条件下陆地生态系统土壤碳循环过程及其影响因素.在中国科学院长武黄土高原农业生态试验站,针对20世纪80年代以来综合治理的王东沟小流域,选取坡地上不同生长年限苹果园和刺槐林群落,测定表层(0~20 cm)土壤有机碳(SOC)、全氮(TN)以及根系生物量和地表凋落物含量,研究不同治理措施下SOC的变化特征及其影响因素.结果表明:1随生长年限的增加,苹果园中SOC、TN含量呈降低趋势,而刺槐林中呈增加趋势.与农地(对照)相比,3年、8年、12年、18年苹果园SOC、TN含量分别降低了3.26%、10.54%、18.08%、22.55%和-8.08%、-0.48%、4.97%、16.91%,12年、18年、25年刺槐林SOC、TN含量分别增加了5.31%、32.36%、44.13%和2.49%、15.75%、24.22%;23年、8年、12年、18年苹果园细根生物量,分别为农地(对照)的25.97%、66.23%、85.71%和96.10%,凋落物量均为0 g·m-2,而12年、18年、25年刺槐林细根生物量相较农地(对照),分别增加了23.53%、79.41%、157.35%,凋落物输入量分别为194、298、433g·(m2·a)-1;3有机物输入差异是导致果园和刺槐生态系统土壤固碳功能差异化的重要原因.  相似文献   
10.
长期施氮和水热条件对夏闲期土壤呼吸的影响   总被引:9,自引:7,他引:2  
张芳  郭胜利  邹俊亮  李泽  张彦军 《环境科学》2011,32(11):3174-3180
在黄土高原地区,夏季休闲期既是高温多雨期也是土壤微生物强烈活动期.研究该时期土壤呼吸变化与土壤水分、温度和施氮之间关系,有助于深入理解农田生态系统土壤呼吸的时空变异性及其影响因素.本研究以1984年设立在黄土旱塬区长期田间定位试验为平台,选取了5个不同施氮处理(N0、N45、N90、N135和N180),于2009年夏...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号