首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   3篇
  国内免费   12篇
废物处理   2篇
综合类   15篇
基础理论   1篇
  2023年   1篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2005年   2篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
二次硝酸盐是PM2.5中的重要二次无机离子组分,为了解PM2.5中二次硝酸盐的形成及防控途径,基于天津市城区点位2018~2019年高时间分辨率的PM2.5在线监测数据,对气溶胶颗粒物的离子组分、pH值、NH3-NH4+和HNO3-NO3-浓度分布以及硝酸铵形成的敏感性进行了研究.结果表明,天津PM2.5平均浓度为58μg·m-3,PM2.5中主要离子组分为NO3-、NH4+、SO42-、Cl-和K+,在PM2.5中的占比分别为18.4%、11.6%、10.3%、3.3%和2.6%,PM2.5及主要组分浓度均在采暖季高、非采暖季低.气溶胶颗粒物整体呈现弱酸性,平均pH值为5.21,季节分布为春冬季节高、夏秋季节低,日变化趋势表现为早间(00:00~08:00)低,其他时间略高.NH3和HNO3的平均浓度水平分别为16.7μg·m-3和1.2μg·m-3,NH3浓度在每年的4~9月相对较高,10月~次年2月浓度相对较低;HNO3浓度水平月际变化不明显.除夏季外,其他季节NH3浓度均为早晚较高,其他时段较低;HNO3浓度整体呈现白天相对略高,晚上相对略低的特点.不同pH值下NH3与NH4+、HNO3与NO3-的浓度分布呈现明显的非线性关系,早晚NH4+与NO3-的浓度均较高,pH值与NH3和NH4+以及HNO3与NO3-的浓度分布均为非线性.敏感性图表明,2018~2019年天津市硝酸铵的形成主要处于HNO3敏感区域,部分处于NH3&HNO3敏感区域.从季节分布上看,春季、秋季和冬季硝酸铵的形成主要处于HNO3敏感区域,夏季硝酸铵的形成主要处于HNO3和NH3&HNO3敏感区域.为有效减少天津市PM2.5中二次硝酸盐的形成,春季、秋季和冬季主要开展HNO3前体物(NOx)的控制,夏季主要开展HNO3前体物(NOx)和NH3的协同控制.  相似文献   
2.
为了解天津市采暖季PM2.5中重金属的污染特征及健康风险,使用Xact-625重金属在线分析仪于2020年11月至2021年3月对PM2.5中的重金属元素进行连续采样,分析10种重金属元素(Pb、 Cd、 Cr、 As、 Zn、 Mn、 Co、 Ni、 Cu和V)的污染特征,利用HYSPLIT模型分析重金属元素的时空分布特征,并结合美国EPA健康风险评价模型对重金属健康风险展开研究.结果表明,采样期间天津市10种重金属元素的总浓度平均值为(261.56±241.74)ng·m-3,Cr[折算Cr(Ⅵ)]和As元素高于《环境空气质量标准》(GB 3095-2012)的年平均限值.后向轨迹分析表明,天津市主要受到来自西北部中距离气团(1号)、西北部长距离气团(2号)、西南部气团(3号)和东北部气团(4号)的影响.不同气团来向重金属元素呈现不同的污染特征和健康风险,3号气团PM2.5浓度、10种重金属元素总浓度和5种重金属元素经呼吸途径暴露的终身致癌风险值之和均最高,2号气团10种重金属元素经呼吸途径暴露...  相似文献   
3.
孝义是一个以煤为主的资源型城市,工业结构以煤铝开采和加工业为主体。改革开放以来,煤焦比重进一步增加,煤炭、焦化等重污染行业,在工业总能耗中占据了主要地位,使得工业结构更趋单一。这种结构最突出的问题就是环境污染和生态破坏严重,主要污染物多年一直超标,严重危害着孝义市可持续发展的生存支持能力、发展支持能力和环境支持能力。  相似文献   
4.
杭州市冬季环境空气PM2.5中碳组分污染特征及来源   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究杭州市PM2.5中碳组分特征,于2013年12月-2014年2月在7个常规点位和2个对照点同步采集PM2.5样品,分析其污染特征及来源.结果表明:杭州市冬季有机碳(OC)、元素碳(EC)、二次有机碳(SOC)的平均质量浓度分别为(23.7±7.5)(5.0±2.4)和(9.2±4.5)μg/m3,OC/EC[ρ(OC)/ρ(EC)]和SOC/OC[ρ(SOC)/ρ(OC)]的平均值分别为5.3±1.9和0.4±0.2.对照点ρ(OC)、ρ(EC)、ρ(SOC)和OC/EC、SOC/OC分别为常规点位的0.8、0.6、1.2、1.2和1.3倍.采样期间,常规点位和对照点ρ(OC)和ρ(EC)的日均值具有相同的时间变化趋势.对照点ρ(OC)和ρ(EC)的相关性(0.49)低于常规点位(0.61),对照点PM2.5中OC和EC的来源差异性更明显.8个碳组分的丰度分析表明,常规点位和对照点PM2.5中碳组分的来源基本一致,主要来源于道路尘、燃煤、机动车和生物质燃烧.绝对主因子分析法源解析结果表明,杭州市冬季PM2.5中总碳(TC)的主要来源中,燃煤/汽油车排放/道路尘、柴油车排放和生物质燃烧的分担率为79.1%、13.1%和3.5%.   相似文献   
5.
利用单颗粒气溶胶质谱仪研究燃煤尘质谱特征   总被引:3,自引:2,他引:1  
采用单颗粒气溶胶质谱仪(SPAMS)和再悬浮采样器联用的方式对燃煤电厂烟道气样品和下载灰样品的质谱特征进行测定,并使用颗粒物粒径分级采样仪ELPI测定其粒径分布特征.研究表明,SPAMS监测得到的粒径分布与ELPI结果差异较大,SPAMS对于500 nm以上粒径段检测效果较好;两个样品正谱图中有非常明显的锂、钙、钛、铝等金属组分信号和碳组分信号特征,负谱图中硅酸盐、硝酸盐和硫酸盐等信号比较明显,并且随着粒径的增加碳组分、硫酸盐和硝酸盐等组分对应的信号强度逐渐减弱,而硅酸盐、铝、钙和钛等组分对应的信号强度逐渐增强;对两个样品使用ART-2a聚类获得多个颗粒物类别,分析表明,它们均含有元素碳二次类(硫酸盐和硝酸盐缩写为二次Sec)、有机碳二次类、铝元素碳类、铝钙硅酸盐类和富硅酸盐类等颗粒物类别,并且随着粒径的增加金属硅酸盐颗粒出现频率增大,而含碳颗粒与硫酸盐出现频率降低.但烟道气样品和下载灰样品的质谱特征呈显著差异,下载灰样品更能代表燃煤源真实排放特征.建议在今后建立基于单颗粒质谱固定源成分谱时,应使用单颗粒气溶胶质谱仪在外场进行实测,并使用聚类的方法提取不同粒径段上的源质谱特征,可能会取得更好的效果.  相似文献   
6.
孝义是一个以煤为主的资源型城市,工业结构以煤铝开采和加工业为主体.改革开放以来,煤焦比重进一步增加,煤炭、焦化等重污染行业,在工业总能耗中占据了主要地位,使得工业结构更趋单一.这种结构最突出的问题就是环境污染和生态破坏严重,主要污染物多年一直超标,严重危害着孝义市可持续发展的生存支持能力、发展支持能力和环境支持能力.2001年,山西省的生存支持能力在全国排第31位,发展支持能力排第28位,环境支持能力排第30位.我市作为山西省环境污染严重城市之一,2003年以来,坚持以科学的发展观为指导,加快资源型经济转型步伐,将循环经济的发展理念贯穿到区域经济发展的各个环节,努力使资源得到最充分、最有效的利用,全市经济实力和可持续发展能力得到进一步加强.  相似文献   
7.
为了解京津冀区域PM_(2.5)中碳组分污染特征,于2015年7月和10月及2016年1月和4月在北京、天津、保定、石家庄、沧州5个城市同步采集PM_(2.5)样品,采用热/光分析法分析样品中有机碳(OC)和元素碳(EC),使用OC/EC最小比值法估算二次有机碳(SOC).结果表明:京津冀区域主要城市OC、EC和SOC的年均浓度分别为12.9~28.5、4.1~7.9和3.3~10.4μg·m~(-3),OC/EC和SOC/OC的比值分别为2.4~3.0和0.26~0.32.OC和EC的浓度呈现保定石家庄沧州天津北京的空间分布特点和夏季春季秋季冬季的季节变化特点.OC/EC的比值及OC和EC的相关性在夏季最低,冬季最高,这可能与京津冀区域冬季采暖燃煤有关,冬季不利的气象条件也加剧了碳质气溶胶污染.冬季较高的SOC浓度主要与低温、气态前体物的增加以及频繁出现的逆温、小风和混合层高度降低等不利气象条件有关.京津冀区域碳质气溶胶的污染特征具有空间相似性.  相似文献   
8.
肖致美  徐虹  李立伟  李鹏  元洁  唐邈  杨宁  郑乃源  陈魁 《环境科学》2020,41(10):4355-4363
为了解天津市PM2.5的污染特征及来源,基于2017~2019年高时间分辨率的在线监测数据,对PM2.5浓度、化学组分和来源进行了分析.结果表明,2017~2019年,天津PM2.5平均浓度为61 μg ·m-3,PM2.5中主要化学组分为NO3-、OC、NH4+、SO42-、EC和Cl-,在PM2.5中占比分别为17.7%、12.6%、11.5%、10.7%、3.4%和3.1%.从年分布上看,PM2.5及主要化学组分浓度均呈现下降趋势,NO3-和NH4+在PM2.5中占比上升,SO42-、OC和EC在PM2.5中占比下降,Cl-在PM2.5中占比略上升,其他组分K+、Ca2+和Na+浓度及在PM2.5中占比均上升.PM2.5及主要组分浓度在采暖季相对较高,非采暖季相对较低,夏秋季SOR和NOR较高,二次转化强,PM2.5中二次无机离子(NO3-、NH4+和SO42-)占比相对较高.当PM2.5浓度为优良级别时,PM2.5中二次无机离子占比较低,OC占比较高,SOC生成较高,Ca2+和Na+占比相对较高;PM2.5浓度为轻度及以上污染级别时,随着污染程度加重,PM2.5中二次无机离子占比明显上升,OC占比基本稳定,EC和Cl-占比略升,K+、Ca2+和Na+等离子占比下降.PM2.5浓度处于中度及以上污染级别时,机动车影响明显增加.PMF解析结果表明,2017~2019年,天津市PM2.5的主要来源为二次源、机动车排放、工业和燃煤排放以及扬尘.其中机动车排放的贡献分担率上升,二次源、扬尘的贡献分担率略升,工业和燃煤源的贡献分担率略降.对天津来说,机动车、燃煤和工业排放始终是PM2.5最主要的一次污染来源,产业结构和能源结构的调整以及机动车的管控是大气污染防治的主要方向.  相似文献   
9.
为了明确天津市区环境受体PM_(2.5)中碳组分的污染特征及来源,本研究分别于2016年2月(冬季)和8月(夏季)在天津市区设置6个采样点位同步采集PM_(2.5)样品,采用热光反射法测定样品中各个碳组分(OC1~OC4、EC1~EC3和OP(裂解碳))的含量,并计算得到OC、EC、CharEC和Soot-EC,以定性识别大气颗粒物中碳组分的来源.结果表明,夏季PM_(2.5)中OC平均浓度为(7.5±3.0)μg·m-3,占PM_(2.5)的11.7%±4.1%;而冬季相比于夏季OC的浓度和占比均有增加,分别为(13.1±7.0)μg·m-3和13.9%±2.8%.夏季和冬季EC浓度分别为(4.0±1.8)μg·m-3、(4.3±2.4)μg·m-3,占PM_(2.5)的6.1%±2.0%和4.6%±1.2%.OC与EC的相关性在夏季(r=0.83,p0.01)和冬季(r=0.96,p0.01)均显著,而冬季CharEC与OC(r=0.94,p0.01)、EC(r=0.98,p0.01)相关性明显高于夏季(OC:r=0.44,p0.01;EC:r=0.45,p0.01).PM_(2.5)中OC/EC平均值在夏季和冬季分别为1.9和3.0,估算得到夏季SOC为(2.6±1.4)μg·m-3,占OC的33.5%±13.6%;冬季为(3.5±2.5)μg·m-3,占OC的26.6%±12.0%.夏季Char-EC/Soot-EC为6.5,高于冬季(4.9),并且空间差异性显著(t检验,p0.05).正定矩阵因子模型(PMF)解析结果表明,天津市区大气PM_(2.5)中碳组分主要有4类来源:燃煤及生物质排放混合源、柴油车、汽油车、道路尘,对夏季PM_(2.5)中碳组分分担率分别为35.4%、16.4%、20.5%、14.4%;对冬季碳组分分担率分别为41.3%、15.5%、18.1%、16.3%.可见,燃煤和机动车是天津市区PM_(2.5)中碳组分的主要来源.  相似文献   
10.
天津市冬季气溶胶吸湿因子的粒径分布特征   总被引:1,自引:1,他引:0  
气溶胶粒径吸湿增长因子[g(RH)]是影响气溶胶消光和气溶胶辐射强迫的重要因素.利用吸湿性串联差分电迁移率分析仪(HTDMA)观测了天津市冬季不同污染状态下气溶胶粒子gm(RH)的粒径分布.同时基于水溶性离子的粒径分布,利用κ-Köhler理论获取了较宽粒径范围内(60 nm~9.8 μm)的gκ(RH),为环境状态下气溶胶光学参数和直接辐射强迫的模拟提供基础.结果表明,清洁状态下大气光化学反应较为活跃,超细粒子(<100 nm)的gm(RH)较高,gm(RH=80%)在1.30以上.重度污染天,气溶胶中水溶性离子的质量分数随粒子粒径增大而增加,导致gm(RH)随着粒子粒径增大而增大,300 nm粒子的gm(RH=80%)和gm(RH=85%)分别可达1.39和1.46.在较宽粒径范围(60 nm~9.8 μm)内,不同模态气溶胶的吸湿性强弱表现为积聚模态>爱根模态>粗模态.大气重污染过程中气溶胶粒径明显增大,积聚模态气溶胶中NO3-和SO42-含量较清洁天明显增加,受此影响,污染状态下积聚模态气溶胶的吸湿性较清洁天明显增强,gκ(RH)达到1.3~1.4,具有强吸湿性的气溶胶粒径范围也同时扩大,在0.18~3.1 μm粒径段均较高,对能见度恶化有重要的贡献.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号