首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   27篇
  国内免费   2篇
综合类   51篇
社会与环境   1篇
  2023年   1篇
  2022年   3篇
  2021年   8篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   8篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
为了揭示丹江口水库沉积物氮空间分布特征及其生物有效性,采用连续分级提取法研究了表层沉积物中可交换态氮(Exchangeable nitrogen,EN)、酸解态氮(Acid hydrolysable nitrogen,HN)及残渣态氮(Residue nitrogen,RN)的赋存特征,同时结合生物可利用态氮的含量,探讨了各形态氮对生物可利用态氮的贡献。结果表明,丹江口水库沉积物中总氮(Total nitrogen,TN)在425~5796 mg/kg之间,平均为1 319.32 mg/kg,其中EN、HN和RN的平均值相对比例为2.15∶1.95∶1,且各形态氮含量的空间分布呈入库河流大于库区开阔区域的特征,尤其在丹江、老灌河以及犟河-堵河入库口的含量较大。潜在矿化氮(Potential mineralized nitrogen,PMN)含量在40.20~1 468.95 mg/kg之间,平均为275.06 mg/kg,其中EN对丹江口水库沉积物PMN的贡献较大,比例在19.85%~90.80%之间,平均为63.47%。各形态氮在不同的水环境条件下发生迁移转化,保持着水-沉积物界面氮的动态平衡。  相似文献   
2.
洞庭湖沉积物不同形态氮赋存特征及其释放风险   总被引:11,自引:1,他引:10  
为了揭示湖泊沉积物中氮的空间分布特征及其释放风险,采用连续分级提取法研究了洞庭湖表层沉积物中EN(可交换态氮)、HN(酸解态氮)及NHN(非酸解态氮)的赋存特征;同时,结合BN(生物可利用态氮)的含量和释放通量的大小,探讨了各形态氮对BN的贡献及与释放通量的相关关系.结果表明,受水动力和湖盆地形的影响,沉积物中各形态氮含量空间差异较大.全湖w(TN)在735.91~2846.51 mg/kg之间,平均值为1371.85 mg/kg,东洞庭湖、西洞庭湖、南洞庭湖、洞庭湖出口w(TN)的平均值分别为1513.43、1173.14、1262.76和1363.31 mg/kg.从各形态氮含量占w(TN)的比例来看,w(HN)最高,平均占66.74%;其次是w(NHN),平均占21.46%;w(EN)最小,仅占11.80%.东洞庭湖、西洞庭湖、南洞庭湖、洞庭湖出口w(BN)的平均值分别为189.31、170.16、152.87和139.51 mg/kg,其值大小主要受w(EN)和w(HN)的影响.东洞庭湖、西洞庭湖、南洞庭湖、洞庭湖出口沉积物中NH4+-N释放通量的平均值分别为6.32、7.03、7.78和146.96 mg/(m2·d),沉积物中NH4+-N释放通量主要受EN控制,其中尤其受可交换态NH4+-N的控制,而沉积物中的HN和TN尚不是影响沉积物氮释放的主要因素.  相似文献   
3.
蠡湖水环境综合整治工程实施前后水质及水生态差异   总被引:1,自引:0,他引:1  
为探讨水环境综合治理工程措施对蠡湖水生态环境的改善效果,对工程实施前后蠡湖水生态环境的变化及趋势进行了分析.结果表明,水环境综合治理工程实施后,蠡湖水质明显好转,水体中ρ(TN)、ρ(TP)、ρ(CODMn)和ρ(Chla)年均值显著下降(P0.01),ρ(TN)、ρ(TP)、ρ(Chla)分别由综合治理前(1992—2002年平均值)的5.77、0.19 mg/L和59.90μg/L降至综合治理后的3.13、0.13 mg/L和27.12μg/L,ρ(CODMn)则由7.09 mg/L降至5.00 mg/L以下;表层沉积物中w(OM)、w(TN)和w(TP)分别由2001年的40.40、1.19、2.61 g/kg降至2012年的19.60、1.16、0.59 g/kg;2012年生态修复工程区内初步形成了一个水生植物较为完整的生态系统.综合整治后,水质改善效果明显,但部分水体感观指标〔如ρ(TSS)、SD(透明度)〕改善效果不明显,底栖动物优势种群仍为耐污种,生态系统完全恢复还需时日.因此,有必要进一步开展以提高透明度、恢复沉水植物为核心的生态优化调控,促进蠡湖由藻型浊水稳态向草型清水稳态转变.  相似文献   
4.
为识别呼伦湖水体中氟化物的演变趋势,揭示呼伦湖水体氟化物浓度畸高的原因,于2015—2020年对呼伦湖入湖河流、湖周地下水、湖泊水体中氟化物(以F-计)浓度进行了详细调查,并结合2005—2014年历史数据分析呼伦湖水体中氟化物浓度的影响因素.结果表明:2018—2019年,呼伦湖全湖水体氟化物浓度平均值在2.27~2.42 mg/L之间,年均值为2.36 mg/L,4个季节平均值之间无显著差异,但空间分布差异显著,在春季、夏季和秋季均表现为四周低、中间高的分布趋势,冬季则相反.3条主要入湖河流克鲁伦河、乌尔逊河和呼伦沟河水体中氟化物浓度显著低于湖体,分别为(1.14±0.36)(0.84±0.14)和(0.33±0.08)mg/L,氟化物入湖通量分别为236.41、396.31和301.29 t/a,地下水和入湖河流输入是呼伦湖水体氟化物的主要来源.呼伦湖水体中氟化物浓度主要在特殊气候地理条件引起的高自然本底环境下,受pH、湖体蓄水量和冰封作用的共同影响.研究显示,入湖河流、地下水等输入的氟化物在强蒸发作用下富集浓缩且缺少氟化物出湖途径是造成呼伦湖水体氟化物浓度畸高的根本原因.   相似文献   
5.
采用连续分级提取法研究了蠡湖表层沉积物中有机磷和无机磷的形态及其赋存特征,同时结合间隙水体中DTP(溶解性总磷)的空间分布特征,讨论了各形态磷的生物有效性及其释放风险.结果表明,蠡湖沉积物中的磷以IP(无机磷)为主,w(IP)占w(TP)的58.09%.IP中以生物可利用性差的Ca-Pi(Ca结合态无机磷)占优势,w(Ca-Pi)为(207.75±48.56)mg/kg,占w(IP)的48.97%;沉积物OP(有机磷)中以活性最差的NA-Po(非活性有机磷)占绝对优势,w(NA-Po)为(195.33±50.73)mg/kg,占w(OP)的67.09%.间隙水中的磷以DIP(溶解性无机磷)为主,ρ(DIP)占ρ(DTP)的11.86%~86.13%,平均值为59.65%.WA-Pi(弱吸附态无机磷)、PA-Pi(潜在活性无机磷)、Fe/Al-Pi(Fe/Al结合态无机磷)、WA-Po(弱吸附态有机磷)、PA-Po(潜在活性有机磷)的质量分数均与间隙水中ρ(DTP)呈极显著正相关(P0.01),w(Ca-Pi)与间隙水中ρ(DTP)呈正相关(P0.05),w(NA-Po)与间隙水中ρ(DTP)无显著的相关性.因此,即使在外源磷得到有效控制的情况下,沉积物中的IP及高活性有机磷的释放仍有可能导致湖泊富营养化状态维持不变.  相似文献   
6.
巢湖藻类生物量季节性变化特征   总被引:14,自引:2,他引:14  
在2008年对巢湖浮游藻类的生态分布进行了为期1 a的调查研究,并采用自制"藻类上浮/下沉捕集器"定量研究了水柱中藻类上浮和下沉速率的季节性变化.结果表明,蓝藻为巢湖主要的水华优势群落,但各个季节优势水华种群有所差别,春季鱼腥藻占优势,微囊藻次之;夏、秋两季微囊藻占绝对优势.5月开始,水柱中藻类生物量明显增加;8月份达到最大值,叶绿素含量全湖平均为146.37 mg.m-3.表层沉积物中藻类生物量在9.75~16.24 mg.kg-1之间,最小值出现在夏季,然后逐渐升高,最大值出现在冬季的11月.研究期间(5~10月),水柱中浮游藻类一直存在上浮和下沉现象,上浮速率在总体上呈先上升后下降的趋势,最大值出现在8月初,为0.036 8 mg.(m2.d)-1;下沉速率则呈现先缓慢上升后急剧下降的趋势,最大值出现在9月初,为0.032 1 mg.(m2.d)-1.多元逐步回归统计表明,温度是巢湖藻类生物量变化最为显著的影响因子,其次为总氮(TN)和总磷(TP).  相似文献   
7.
为探究呼伦湖中As(砷)的时空变化格局及成因,分别于春季、夏季、秋季、冬季采集呼伦湖表层水和表层沉积物样品,对As的时空分布及其组成特征进行了调查,并探讨呼伦湖中As的来源及环境因素对水体As分布的影响.结果表明:①呼伦湖水体中ρ(TAs)(TAs为总As)在6.6~87.3 μg/L之间,平均值为47.0 μg/L,其中ρ(DTAs)(DTAs为溶解态TAs)占比为70.6%~99.8%,且As(Ⅴ)(砷酸盐)为主要存在形态.春季、冬季ρ(TAs)平均值高于夏季、秋季,且冬季ρ(TAs)的空间分布与其他3个季节差异明显.②表层沉积物w(TAs)为1.64~15.49 mg/kg,各季节w(TAs)空间分布均呈由西北向东南递减的趋势;w(F1)(F1为可交换态及碳酸盐结合态As)和w(F2)(F2为Fe/Mn氧化物结合态As)在w(TAs)中的占比相对较高,分别为31.7%和30.0%,一定环境条件下F1和F2易向水体迁移,是水体中As的主要来源.③呼伦湖水体pH、冬季冰封、入湖河流等环境因素均可影响水体中As的时空分布,其中冰封引起的沉积物-水界面缺氧环境及污染物浓缩效应是造成冬季湖泊西北沿岸水体ρ(TAs)显著升高的主要原因.研究显示,呼伦湖水体及沉积物中的As均以自然来源为主,其中沉积物释放及环境变化是水体中As时空分布格局的主要影响因素.   相似文献   
8.
王坤  张岚  姜霞  赵丽  王书航 《环境科学研究》2018,31(12):2124-2132
为了解青藏高原湖区典型深水湖泊——羊卓雍错沉积物重金属污染水平及当前生态风险,以表层沉积物为基础,采用参考元素法计算研究区的重金属背景值,并对重金属生态风险状况进行了初步评估.结果表明:①羊卓雍错沉积物中重金属Cr、Ni、Cu、Zn、As、Cd、Hg和Pb的背景值分别为(27.49±11.39)(22.53±4.74)(15.93±6.44)(28.22±9.68)(11.96±2.34)(0.22±0.11)(0.04±0.03)(11.59±5.29)mg/kg.②羊卓雍错表层沉积物重金属生态风险指数为66.96~227.79,平均值为119.45,各采样点重金属潜在生态风险均处于低风险或中等风险,流域整体处于低风险.③羊卓雍错表层沉积物中8种重金属的潜在生态风险顺序为Hg > Cd > As > Pb > Ni > Cu > Cr > Zn,各重金属生态风险指数范围为0.97~123.25,平均值在1.01~56.67之间,除Hg处于中等风险外,其余7种重金属均处于低风险状态.研究显示,参考元素法可便捷、准确地计算受人类活动影响较小湖泊的沉积物重金属背景值,当前羊卓雍错沉积物中重金属质量分数主要受背景值影响,而人类活动对重金属污染亦有贡献,需适当加强关注.   相似文献   
9.
环境治理工程对蠡湖水体中磷空间分布的影响   总被引:1,自引:0,他引:1  
为评估水环境治理工程措施对蠡湖水体营养状态的影响,2012年4月对湖体与环湖河口调查分析,研究了蠡湖磷元素空间分布特征及其影响因素.结果表明:蠡湖水体总磷浓度介于0.03~0.31mg/L之间,平均为0.06mg/L,呈由西向东逐渐递增的趋势,且环湖河口磷含量明显高于湖体;沉积物中总磷空间分布趋势类似于水体,湖体总磷含量在321.77~1062.08mg/kg之间,平均为593.75mg/kg,而环湖河口总磷含量在523.38~1396.39mg/kg之间,平均为784.51mg/kg;结合历年监测数据可以看出,一系列水环境治理工程使得蠡湖水质有了大幅度的改善,水体中总磷的年均值由治理前0.18mg/L下降到0.06mg/L,但仍没有完全从根本上解决水体的富营养化问题.主要原因是沉积物中总磷对水体影响较大,相关性分析表明磷的扩散通量与沉积物总磷和可交换态磷成显著正相关.  相似文献   
10.
蠡湖沉积物重金属形态及稳定性研究   总被引:12,自引:8,他引:4  
王书航  王雯雯  姜霞  宋倩文 《环境科学》2013,34(9):3562-3571
以蠡湖及其入湖河口为研究对象,采用连续分级提取法研究了表层沉积物中Cr、Ni、Cu、Zn、As、Cd、Hg和Pb形态的空间赋存特征,同时结合各金属在间隙水体中的空间分布,探讨了各形态金属的稳定度及其生物有效性.结果表明,间隙水体及表层沉积物可提取态金属分布都具有明显的空间异质性,Cr、Cu、Zn、Pb的高值区沿宝界桥和蠡湖大桥呈"带状"分布,Ni、As、Cd、Hg的高值区沿河口向湖区扩展,呈"扇形"分布,并且含量都在退渔还湖区较低.沉积物中Cd、Cu、Ni的可提取态占总量的质量分数较高,分别达到71.02%、54.79%和50.62%,其余金属则主要以残渣态为主.8种金属稳定性顺序为Cr>Pb>Hg>As>Cu>Ni>Zn>Cd,Cd和Zn在大部分点位处于不稳定状态,快速解吸释放的风险较大.间隙水体毒性评估表明,各金属不会对水生生态系统产生急性毒性,但部分区域尤其是入湖河口的Hg和Pb可能会对底栖生物产生慢性毒性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号