首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   24篇
安全科学   8篇
综合类   34篇
基础理论   3篇
污染及防治   2篇
评价与监测   1篇
  2022年   6篇
  2021年   4篇
  2020年   4篇
  2019年   7篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
为了降低平煤十矿己15-16-24130工作面运输巷掘进中的突出危险性,基于实际工程背景,考虑瓦斯抽采中的瓦斯运移及煤岩变形等因素,建立了瓦斯抽采气固耦合模型,并利用COMSOL Multiphysics软件对平煤十矿己15-16煤层的底板巷穿层钻孔瓦斯抽采方案进行数值模拟,研究了瓦斯抽采对于降低掘进过程中突出危险性的影响。研究结果表明:在己18煤层开挖底板巷对己15-16煤层进行穿层钻孔瓦斯抽采,瓦斯抽采180 d后,己15-16-24130工作面运输巷附近煤层残余瓦斯压力及瓦斯含量分别降至0.315 MPa和3.84 m3/t;将底板巷穿层钻孔瓦斯抽采方案进行工程应用,实测抽采后的残余瓦斯压力及瓦斯含量在0.32 MPa和3.17 m3/t,均小于平煤十矿煤与瓦斯突出防治规定的“双6”指标(残余瓦斯压力小于0.6 MPa,残余瓦斯含量小于6 m3/t),可有效降低运输巷掘进过程中的突出危险性。  相似文献   
2.
为解决大采高厚煤层工作面回采期间瓦斯超限难题,应用顶板走向长钻孔中位钻孔和下临近层底板定向长钻孔等瓦斯抽采措施,对回采面瓦斯进行了多源头治理。通过对顶板走向长钻孔的抽采效果考察,确定其垂直层位为40±5 m范围、水平层位为50±10 m范围为最佳瓦斯抽采区域;中位钻孔合理的垂直层位为20 m左右,水平层位为45~50 m范围抽采效果最佳;下临近层底板定向长钻孔是拦截下部5#煤和7#煤向上部采掘空间涌出瓦斯的有效手段,其最佳的水平层位为距巷道轮廓线20 m范围,垂直层位为钻孔布置在下临近层煤层中。通过对3种不同瓦斯治理措施的综合评价考察,确定顶板走向长钻孔是治理回采面最为有效的措施,其抽采量占工作面回采期间总抽采量的79.6%,中位钻孔抽采和下临近层底板定向长钻孔抽采是回采面回采期间的辅助性措施。措施使用后,工作面上隅角瓦斯浓度保持在0.4%~0.6%之间,有效保证了工作面的安全高效回采。  相似文献   
3.
利用主动观测技术对宁东能源化工基地大气PM2.5、PM1.0和气相中的PAHs浓度水平、族谱特征、时空分布及来源进行研究,并基于该观测数据对居民呼吸暴露健康风险进行评估.结果表明,宁东基地大气PM2.5、PM1.0及气相中∑16PAHs浓度范围分别为:17.95~325.12ng/m3、12.66~311.96ng/m3和26.33~97.88ng/m3,年均浓度分别为(99.42±117.48)ng/m3、(78.88±100.58)ng/m3和(57.89±47.39)ng/m3.宝丰基地冬夏季大气PM2.5、PM1.0和气相中∑16PAHs浓度水平均明显高于英力特;宝丰和英力特基地冬季大气PM2.5、PM1.0中∑16PAHs浓度水平均明显高于夏季浓度.宁东基地大气中∑16PAHs的浓度水平要高于国内外其他城市,大气PAHs污染较为严重.源解析表明夏季宁东基地PAHs的主要排放源是工业煤燃烧和机动车尾气,冬季则主要来自工业煤燃烧和木材、薪柴等生物质燃烧排放.宁东基地人群暴露于大气PAHs可能会造成平均冬季每百万人中约有33~2628人罹患癌症,夏季每百万人中约有11~834人罹患癌症的风险.  相似文献   
4.
利用大气主动采样技术对宁东能源化工基地大气PM_(2.5)中硝基多环芳烃(NPAHs)的污染特征、一次排放和二次形成源贡献及呼吸暴露风险进行了观测研究.结果表明,宁东能源化工基地大气PM_(2.5)中Σ _(12)NPAHs质量浓度在2. 06~37. 14ng·m~(-3)之间,其中基于能源产业的宝丰采样点冬、夏季采样期Σ _(12)NPAHs的平均质量浓度分别为(25. 57±5. 76) ng·m~(-3)和(6. 22±1. 74) ng·m~(-3).以化工、电力产业为主的英力特采样点冬、夏季Σ _(12)NPAHs平均质量浓度分别为(7. 13±1. 44)ng·m~(-3)和(2. 58±0. 39) ng·m~(-3),两采样点均表现出冬季高于夏季的季节特征,推测为冬季取暖造成较高的NPAHs一次排放所致.宝丰采样点Σ _(12)NPAHs浓度水平明显高于英力特,可能与宝丰的煤炭开采及焦炭生产的能源产业较化工产业造成更高的NPAHs一次排放相关,因而造成了Σ _(12)NPAHs浓度水平的空间差异.两个采样点PM_(2.5)中Σ _(12)NPAHs浓度的夜昼比表明,夏季Σ _(12)NPAHs浓度日间明显高于夜间而冬季则相反,表明夏季日间较夜间存在更活跃的大气光化学反应,较夜间贡献更多二次形成的NPAHs. NPAHs族谱特征的时空差异表现为:宝丰和英力特采样点冬夏季均以一次排放标识物2N-FLO和6N-CHR为主要占比,其中宝丰采样点冬季2N-FLO和6N-CHR总占比为46%,夏季为73%,英力特采样点冬季总占为59%,夏季为55%.但英力特采样点夏季二次形成的标识物3N-PHE浓度占比较宝丰更高,表明基于化工产业的英力特较宝丰存在更高的前体物排放,由此贡献更多二次形成的NPAHs.本研究还借助Σ _(12)NPAHs/Σ _(16)PAHs比值对NPAHs可能的来源贡献进行了分析研究,结果表明宁东能源化工基地夏季较高的温度促进了PAHs的降解以及NPAHs的二次形成,较冬季贡献更多二次形成源的NPAHs.基于BaP等效毒性因子评价法估算了PM_(2.5)中Σ _5NPAHs的呼吸暴露肺癌风险,结果表明,宝丰采样点PM_(2.5)中Σ _5NPAHs的肺癌风险值冬季为(3. 06×10~(-5)±1. 36×10~(-5)),夏季为(1. 79×10~(-5)±0. 80×10~(-5)),英力特采样点冬季为(2. 85×10~(-5)±1. 20×10~(-5)),夏季为(1. 86×10~(-5)±0. 83×10~(-5)).宝丰和英力特肺癌风险值均高于Cal/EPA规定的1. 00×10~(-5)的限值,表明宁东能源化工基地人群存在一定程度的大气PM_(2.5)中NPAHs呼吸暴露肺癌风险.  相似文献   
5.
甘肃兰-白城市群为我国西北地区重要的重工业基地,大气污染物排放总量较大.研究高空间分辨率的污染物排放清单对于区域空气质量预报预警、减排方案模拟研究及大气污染防治等具有重要的科学意义.本文以兰州和白银为主要研究区域,基于研究区域污染源排放及统计年鉴等数据资料,建立了兰(2015年)-白(2016年)城市群7种(类)主要大气污染物网格化排放清单,并对其空间排放特征以及排放源贡献进行了详尽地讨论分析.结果表明,兰-白城市群7种主要污染物年排放量分别为:NOx 2.22×105 t、NH3 4.53×104 t、VOCs 7.74×104 t、CO 5.62×105 t、PM10 4.95×105 t、PM2.5 1.91×105 t和SO2 1.37×105 t.其中CO的排放量最大,NH3的排放量最小.本清单与北大和清华MEIC清单对比结果表明,交通源排放3个清单一致性较高,CO排放总量和其工业源排放与北大和清华MEIC清单排放源相差30%~40%,推测原因主要为清单计算过程中排放因子、分辨率和数据年份的差异.本清单网格化空间分布显示除NH3外的其他6种(类)污染物,排放主要集中在市区,排放源中工业非燃烧过程源均为最大贡献占比,NH3的主要贡献源是氮肥的施用及禽畜排放,其污染分布受耕地分布等因素影响较大.因此,减少工业非燃烧过程源、整合优质高效电力供应、使用清洁能源、严格控制工地扬尘、工业粉尘和做好城区绿化等,能有效地降低兰-白城市群NOx、VOCs、CO、PM10、PM2.5和SO2这6种(类)主要污染物的排放.NH3的减排则主要可从控制氮肥的使用及减少禽畜排放两方面考虑.本研究还利用蒙特卡洛法分析了排放清单的不确定性,NH3的不确定性最大为-31%~30%,CO的不确定性最小为-18%~16%,清单整体可信度较高.  相似文献   
6.
广州地区典型多溴联苯醚迁移和归趋行为模拟   总被引:3,自引:0,他引:3  
运用多介质逸度模型对典型PBDEs(BDE47、BDE99、BDE209)在广州地区大气、水体、土壤、沉积物中的浓度分布与多介质间的迁移、归趋进行了模拟研究并分析了3种化合物在研究区域环境多介质间的迁移通量,确定其在环境中的主要迁移过程;结合实际监测数据,对模型的可靠性进行验证;以BDE47和BDE209为例,对模型的输入参数进行灵敏度分析;并以BDE209为例,对模型进行不确定性分析.通过模拟浓度与实测浓度的对比,表明模型在该地区具有很好的适用性.结果表明,环境系统达到平衡时,BDE47、BDE99和BDE209在土壤和沉积物中的含量分别占其在环境系统总含量的17.73%和82.26%,14.65%和85.35%,4.81%和95.19%;PBDEs从环境系统中的消失途径主要为大气平流输出和土壤降解;logKow和大气平流输入是影响化合物在环境相中浓度分布的最主要因素;不确定性分析指出BDE209在土壤相中浓度的变异系数最大.  相似文献   
7.
高宏  王雅瑾 《上海环境科学》1999,18(10):433-435
在探讨电力需求侧管理理论,方法以及电力经济结构和电力与环境问题的基础上,分析评价电力需求侧管理对可持续发展的作用贡献,电力需求侧管理是促进系统可持续发展的战备途径之一。  相似文献   
8.
PCDD/Fs排放清单是进行PCDD/Fs控制、环境归趋行为研究和健康风险评估的基础.本研究基于我国官方发布的2004年各行业PCDD/Fs排放清单的基础上,结合联合国环境规划署(UNEP) 2013年发布的最新《鉴别及量化PCDD/Fs类排放标准工具包》中PCDD/Fs排放因子,估算了我国2016年各省各行业PCDD/Fs大气排放量,并结合各行业网格化指代数据,建立了我国PCDD/Fs大气网格化排放清单(1/4°×1/4°经纬度),最后利用蒙特卡洛模型分析了清单的不确定性.结果表明,2016年我国PCDD/Fs大气排放量(以TEQ计,下同)为10 366 g,与2004年相比增加了约2倍.从排放行业来看,金属生产是我国大气中PCDD/Fs的主要来源,2016年排放量为5 333 g,其次为垃圾焚烧(2 469 g),供热和发电(1 290 g)和矿物产品生产(933 g),以上4个行业排放量占我国PCDD/Fs大气总排放的97%.从空间来看,我国大气PCDD/Fs排放主要集中在京津冀、长三角和珠三角地区,其中京津冀和长三角地区PCDD/Fs排放主要来自钢铁生产,珠三角地区主要来自垃圾焚烧.  相似文献   
9.
本研究利用ICP-OES对西北干旱区某规模化电子垃圾拆解厂拆解车间内外空气不同粒径的颗粒物(PM_1. 0、PM_(2.5)、PM_(10))及上风向对照点PM_(2.5)中的6种重金属(Cd、Cr、Cu、Ni、Pb、Zn)的浓度进行了分析测定,基于该数据对拆解车间内外颗粒物中重金属污染浓度水平、粒径分布特征、职业暴露风险以及呼吸系统沉积特征进行了研究.结果表明,拆解车间内外颗粒物中重金属Zn(室内4 890 ng·m~(-3),室外1 245 ng·m~(-3))、Pb(室内1 201 ng·m~(-3),室外240 ng·m~(-3))、Cu(室内1 200ng·m~(-3),室外110 ng·m~(-3))均表现出较高的污染水平,且室内浓度远高于室外数倍,表明拆解活动是造成室内空气较高浓度重金属的主要原因,室内外空气环境污染特征与电子垃圾拆解种类密切相关.粒径分布特征为:车间内空气环境中重金属主要吸附于PM_(2.5)中,车间外主要是赋存于PM_(10)中.职业暴露风险评估显示:Cr的非致癌与致癌风险最高;拆解厂车间室内外6种重金属总非致癌危害指数为1. 62×10~(-3)和3. 60×10~(-4),远低于U. S. EPA规定的限定值(1. 0);车间室内外致癌总风险值为2. 69×10~(-7)和2. 59×10~(-9),小于可接受范围(1×10~(-6)),表明由重金属所导致的职业健康风险相对较小;评估结果表明按国家环保要求规模化建厂的电子垃圾拆解厂空气环境颗粒物中重金属对公共健康造成的风险处于相对安全的水平.颗粒态重金属在人体呼吸系统的不同器官的沉积特征表现为粒径越小,在呼吸系统的深处的沉积百分占比越大,建议企业应针对细颗粒物给职业工人造成的呼吸健康风险采取相应的减排对策.  相似文献   
10.
珠江河口水域有机磷农药水生生态系统风险评价   总被引:10,自引:2,他引:8       下载免费PDF全文
郭强  田慧  毛潇萱  黄韬  高宏  马建民  吴军年 《环境科学》2014,35(3):1029-1034
通过风险商法和概率风险法评价了珠江河口水域中甲拌磷、敌敌畏及乙拌磷等9种有机磷农药对硅藻、水蚤及糠虾等8种水生生物的生态风险.风险商法评价结果表明,9种有机磷农药混合物总风险商为:糠虾处于高风险中水平,水蚤和摇蚊在中等风险水平,硅藻、牡蛎、鲤鱼、鲶鱼和鳗鱼均处于低风险水平;甲拌磷对风险值的贡献最大,且对每种生物都有影响.概率风险法结果表明,以HC5为参考值评估总风险商时,95%置信水平下的HC5比50%置信水平的HC5保守,50%置信水平的HC5中乐果的HC5最大,毒死蜱的最小;丰水期9种有机磷农药混合物总风险比枯水期农药混合物总风险大,甲拌磷对总风险贡献最大.单一污染物的概率风险表明,甲拌磷和乙拌磷对珠江河口水域中10%以上的生物都有危害;而9种有机磷农药混合物的概率风险表现为:丰水期大于枯水期,均大于5%,说明超过了保护95%生物的安全阈值.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号