首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
  国内免费   1篇
综合类   4篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2012年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
大气污染防治综合科学决策支持平台的开发及应用   总被引:2,自引:0,他引:2       下载免费PDF全文
大气污染防治和环境治理的紧迫性和复杂性需要科学有效的决策,而以费效评估为标志的综合决策评估模型是支撑环境决策和管理的重要工具.当前以ABaCAS(Air Pollution Control Cost-Benefit and Attainment Assessment System,空气污染控制成本效益与达标评估系统)为代表的综合决策评估模型可以实现对特定减排方案的费效评估,然而无法支持开展基于费效的达标路径优化,以及对应不同环境目标下减排策略的优化制定.针对上述问题,建立了大气污染防治综合科学决策支持平台.该平台以ABaCAS的4个核心模块为基础,建立了新的基于环境目标的反算技术(LE-CO)及优化集成运行模式(ABaCAS-OE),实现了对不同环境目标要求的减排量反算,并对优化的减排策略下的空气质量改善效果、目标可达性、控制成本及健康收益进行快速估算.将大气污染防治综合科学决策支持平台应用到京津冀及周边地区"2+26"城市,反算了2035年达标要求下的减排情景,以及对应减排方案的费用与效益.结果表明,相较于2015年,预测了2035年京津冀及周边地区的PM2.5、SO2、NOx、VOCs、NH3排放量需分别减排70%~87%、49%~85%、66%~74%、51%~66%、0~40%才可达标,并且该情景可以带来可观的效益,费用-效益比达3.7.未来大气污染防治综合科学决策支持平台的研究将进一步面向多目标、多行业、多组分、多区域的精细化调控技术,实现经济、能源、排放、浓度、成本、健康、生态、气候一体化的综合决策,以全面支撑我国大气污染防治的综合科学决策.   相似文献   
2.
碳达峰能源政策可同时实现减污降碳,带来明显的空气质量改善及人群健康效益.本研究综合利用LEAP模型、WRF-CMAQ模型和BenMAP-CE模型,量化评估了惠州市能源政策和大气污染控制措施对二氧化碳和大气污染物排放、空气质量和人群健康的影响.结果表明, 不实施碳达峰的基准情景下惠州市CO2排放将持续增长,而能源转型能使惠州市在2030年实现碳达峰值6906万t目标,碳减排贡献最大是 电力部门;大气污染末端控制措施叠加能源政策可从源头进一步减少SO2、VOCs、NOx、PM2.5的排放,较基准年2019分别减排4695、44142、38422、12493 t.能源转型情景下惠州市2035年PM2.5年均浓度可以从基准情景的18.25 μg·m-3下降至14.95 μg·m-3,小于世界卫生组织过渡期 第3阶段目标(15 μg·m-3),O3年均浓度也可大幅降低至133.68 μg·m-3;进而得到归因于PM2.5和O3的可避免早逝人数分别为448例(95% CI:143~737)和36例(95% CI:11~61),相对于基准情景获得的人群健康效益为37.88亿元(95% CI:12.37~61.56).  相似文献   
3.
膜生物反应器处理高浓度含酚废水研究   总被引:1,自引:0,他引:1  
将膜生物反应器(MBR)用于高浓度含酚废水的处理中,探讨了进水中苯酚浓度、水力停留时间和污泥浓度对膜生物反应器处理含酚废水效果的影响。实验结果表明:经过42d驯化后,可以在高浓度含酚废水中正常运行,MBR系统对COD和氨氮的去除率分别可达98%和80.6%。当苯酚浓度为134mg/L时,处理的最佳水力停留时间为3h,最佳污泥浓度(MLSS)为7367mg/L。  相似文献   
4.
以典型城市济南市为研究对象,利用大气污染防治综合决策支持技术平台(简称“技术平台”)综合评估了济南市《2018年大气污染治理“十大措施”实施方案》(简称“‘十大措施’”)的实施效果,并进一步基于特定空气质量目标〔济南市2018年ρ(PM2.5)、ρ(O3)同比2017年分别下降20%、8%〕开展大气污染防治策略寻优及费效评估.结果表明:①“十大措施”实施后,SO2、NOx、VOCs、一次PM2.5减排率分别为39%、24%、42%、41%,该情景在2017基准年气象条件下可使济南市2018年ρ(PM2.5)同比下降19%,新增治污成本约4.70×108元,效益-成本比约1.40;单位减排成本最低的本地扬尘源减排对ρ(PM2.5)下降的贡献率最大,建议济南市下一阶段应进一步强化扬尘源减排.②经过策略寻优,反算得到了SO2、NOx、VOCs、一次PM2.5的减排率分别为46%、20%、42%、60%的优化策略,该策略下的新增治污成本约4.69×108元;对比“十大措施”,优化策略提高了SO2和一次PM2.5的减排率,降低对O3具有负贡献的NOx减排率,满足空气质量目标的同时又尽可能地降低了治污成本,将效益-成本比提升至1.88.技术平台在济南市的初步成功应用,为济南市下一阶段的大气污染防治提供基于实证的科学依据;同时对其在我国城市逐步推广具有重要示范意义,可有效支撑大气污染防治综合科学决策制定.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号