首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   5篇
综合类   5篇
  2019年   1篇
  2017年   4篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
三江源区位于青藏高原腹地,是我国长江、黄河、澜沧江三大河流的发源地.为了准确估算该地区草地生态系统的净生态系统生产力,收集整理了2001—2010年青藏高原10个通量观测站点的观测数据,构建了三江源区草地生态系统NEP(net ecosystem production,净生态系统生产力)估算模型,并在站点尺度进行了模型参数化和精度验证;结合区域尺度气象和遥感数据,估算了三江源区草地生态系统NEP.结果表明:① 2001—2010年三江源区草地生态系统多年平均NEP空间分布具有明显的空间异质性,大部分地区表现为碳汇,NEP(以C计)平均值为41.8 g/(m2·a).② 三江源区草地生态系统NEP呈波动增加趋势,从2001年的20.0 g/(m2·a)增至2010年的82.5 g/(m2·a);除2002年表现为弱碳源外,其余年份均表现为碳汇,并以2010年碳汇能力为最强.③ 2001—2010年三江源区草地生态系统NEP平均年增长率为5.4 g/m2;NEP年际变化率空间分布显示,大部分地区NEP呈增加趋势,仅有东南部和中部部分区域NEP呈下降趋势.研究显示,2001—2010年三江源区草地生态系统表现为碳汇,并且由于气候的暖湿化趋势,碳汇强度总体表现为增强.   相似文献   
2.
鉴于生态系统服务的多样性和评估方法的复杂性使得生态系统服务研究难于纳入到政府决策和政绩考核的问题,以三江源区为例,提出生态系统服务物质当量的概念,并发展了基于能值理论的物质当量估算方法;进而通过构建用于调节生态系统类型之间与生态系统内部差异的均衡因子和调整因子,发展了生态系统服务快速核算方法.结果表明:三江源区主导生态系统服务(包括水源涵养、土壤保持和生态系统固碳)所具有的能值量为2.74×1022sej/a,标准物质当量(即物质当量单位)的能值基准值为1.58×1017sej/(km~2·a),由此估算的物质当量为173 618.80当量/a,单位面积物质当量为0.56当量/(km~2·a),其中,水源涵养、土壤保持和生态系统固碳服务的物质当量所占比例分别为52.72%、28.14%和19.14%.三江源区主导生态系统服务物质当量的空间分布特征表现为从东南向西北逐渐递减的变化趋势;分县(乡)估算的主导生态系统服务物质当量的空间分布与其单位面积物质当量存在较大差异,前者的高值区主要位于治多县、曲麻莱县和杂多县,后者则主要位于尖扎县、同仁县、久治县和班玛县.基于直接评估法估算的各县(乡)单位面积物质当量与基于快速核算方法估算结果的决定系数为0.72,均方根误差为0.25当量/(km~2·a).研究结果有助于实现生态系统服务的快速评估.  相似文献   
3.
三江源区位于青藏高原腹地,作为长江、黄河、澜沧江三大河流的发源地,是我国重要的水源涵养和生态功能保护区.为了及时准确地获取该区域草地生物量信息,根据三江源区高寒草甸、高寒草原采样点的地上生物量实测值,结合遥感植被指数、海拔、气象观测数据(光合有效辐射、年均气温、年降水量)构建BP神经网络模型,估算2001—2010年三江源区的草地地上生物量,并对其进行分县统计和年际变化分析.结果表明:① 通过多次反复的训练与测验得到的BP神经网络模型,对高寒草甸、高寒草原的地上生物量模拟值与实测值的R2分别为0.73、0.79,表明BP神经网络模型具有较好的模拟效果.② 2001—2010年三江源区草地地上生物量多年平均值为172.34 g/m2,其中高寒草甸为214.81 g/m2,高寒草原为130.07 g/m2.③ 三江源区草地地上生物量的空间分布具有明显的空间异质性,呈从东南向西北递减的趋势.其中,位于东部的河南县草地地上生物量最高,为413.46 g/m2;而北部的曲麻莱最低,仅为69.04 g/m2.④ 2001—2010年三江源区草地地上生物量呈缓慢波动上升趋势,平均升幅为0.93 g/(m2·a).研究显示,利用站点地上生物量实测数据构建BP神经网络模型并对地上生物量进行模拟,对于分析区域尺度的草地地上生物量分布格局和变化趋势行之有效.   相似文献   
4.
太阳辐射的散射组分能够增强植被冠层LUE(light use efficiency,光能利用率),因此需要在生产力模型中显式地加入散射辐射的影响,从而更准确地模拟植被冠层光合作用.以青藏高原高寒草地为研究对象,改进光能利用率模型,增加散射辐射模块,利用站点通量观测数据估计模型关键参数;结合区域尺度气象数据和遥感数据,模拟了2003—2008年青藏高原高寒草地区域尺度GPP(gross primary production,总初级生产力),并量化了GPP模拟的不确定性,进而通过分析模型改进前后GPP空间分布及其不确定性的差异量化了散射辐射的作用.结果表明:考虑散射辐射对LUE的影响后,模型参数优化效果明显提升,青藏高原高寒草地GPP的模拟效果得到提升;2003—2008年青藏高原高寒草地GPP模拟值呈现东南部较大,西北部较小的空间格局,与不考虑散射辐射的结果一致,但GPP平均值由312.3 g/(m2·a)增至341.7 g/(m2·a),增幅约9.4%,说明不考虑散射辐射会低估青藏高原高寒草地GPP;GPP模拟值不确定性的空间分布与不考虑散射辐射的结果一致,但是平均不确定性大小有所降低,从9.15%降至8.66%.研究显示,若在青藏高原高寒草地的GPP模拟中不考虑散射辐射,虽不会影响其空间格局,但会低估GPP模拟值的大小,同时增加其不确定性.   相似文献   
5.
湖北省神农架林区是全国唯一以林区命名的行政单位,拥有全球中纬度地区唯一一块保存完好的原始森林,量化其森林生态系统NPP(net primary productivity,净初级生产力)对县域生态系统评估工作十分重要.基于CEVSA2(carbon exchange between vegetation,soil and atmosphere 2)模型模拟1981-2015年神农架林区森林生态系统NPP,并利用中国生态系统研究网络神农架站观测数据和野外调查数据进行验证,进而分析其NPP时空变化特征及其主要环境影响因子.结果表明:①1981-2015年神农架林区森林生态系统年均NPP为628.27 g/m2(以C计),空间分布表现为中部较低、东部以及周边较高,具有明显的空间异质性.②1981-2015年神农架林区年均NPP的增长速率为2.58 g/(m2·a)(R2=0.65,P < 0.001);运用Mann-Kendall突变检验法发现,1998年前后是NPP增长速率变化的突变点,虽然1998年前后两个时段NPP均呈上升趋势,但1999-2015年NPP增长率较1981-1998年下降了7.01%;从空间上来看,林区中部和北部NPP增长率[4~6 g/(m2·a)]相对较高,南部和东部部分地区NPP呈下降趋势,其变化速率在-3~0 g/(m2·a)之间.③神农架林区NPP年际变化与年均温、总辐射年际变化均呈正相关,与年降水量年际变化呈负相关,其中年均温年际变化对NPP年际变化的解释率最高,为43%(P < 0.01);在空间尺度上,林区森林生态系统约67.83%区域的NPP年际变化由年均温年际变化控制,主要分布在林区中部和东南部,可见年均温是该地区森林生态系统NPP的主要影响因素.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号