首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   6篇
综合类   8篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
低温SNAD颗粒污泥工艺启动方式   总被引:1,自引:1,他引:0  
为研究启动方式对同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)颗粒污泥工艺的影响,低温(12.7~18.3℃)条件下,R1和R2反应器分别通过先启动全程自养脱氮(CANON)工艺和先启动厌氧氨氧化耦合反硝化(SAD)工艺的方式逐步启动SNAD颗粒污泥工艺.结果表明,R1反应器启动成功后,氨氮几乎完全去除,总氮去除率达到86.7%.低氨氮浓度运行时,出水总氮去除率下降至75.3%,出水总氮浓度在10 mg·L~(-1)左右,NOB存在过量增殖现象,出水总氮浓度超过北京市水污染物排放标准一级A规定.R2反应器启动成功后,出水几乎不含氨氮,总氮去除率在89.1%左右,略高于R1反应器.低氨氮浓度运行时,出水氨氮浓度小于1.0 mg·L~(-1),出水总氮浓度小于6 mg·L~(-1),出水氨氮和总氮浓度满足地标一级A标准.先启动SAD工艺可以在启动初期通过厌氧运行将NOB逐渐淘汰出系统内,维持了系统的稳定性,为后续曝气启动SNAD工艺提供了良好的基础,维持了反应器的稳定运行,实现出水总氮长期排放达标.  相似文献   
2.
在室温下(22℃±3℃)用SBR反应器运行SNAD工艺,通过定期延长系统水力停留时间,营造间歇饥饿环境,探讨间歇饥饿策略下SNAD工艺的运行情况.结果表明,系统经过间歇饥饿运行后,好氧阶段末的NO_3~--N浓度降至8. 72 mg·L~(-1),亚硝酸盐积累率达到83. 18%,表明NOB活性得到了有效抑制,实现了亚硝化性能的提高;系统经过间歇饥饿运行后,好氧阶段末的亚氮与氨氮基质的比例得到调整,为后续厌氧氨氧化过程提供了合适底物,使出水氨氮浓度降至1. 0 mg·L~(-1)以下,同时由于出水硝氮浓度降低,总氮去除率达到了92. 07%左右,系统处理性能提高;通过测定功能菌活性,发现饥饿后亚硝化性能提高的主要原因是饥饿期AOB活性衰减速率低于NOB及恢复期前期AOB活性恢复速率显著高于NOB.  相似文献   
3.
李冬  崔雅倩  赵世勋  刘志诚  张杰 《环境科学》2018,39(11):5074-5080
在污水处理厂室外,以A/O除磷工艺出水为基质,启动全程自养脱氮(CANON)生物滤柱反应器.反应器启动成功后,进水中投加葡萄糖作为有机碳源,启动同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)工艺,研究SNAD生物滤柱处理城市生活污水的效果.结果表明,第119~128 d,CANON工艺氨氮去除率大于95%,最大出水总氮浓度为13. 0 mg·L~(-1),超过了北京市地标一级A排放标准.第129 d在进水中投加葡萄糖30 mg·L~(-1)启动SNAD工艺,第133~187 d时SNAD工艺总氮去除率在85%左右,出水总氮浓度为5. 5~7. 3 mg·L~(-1).第195d观察到滤柱出现堵塞现象,在第196 d对反应器进行反冲洗,反冲洗后的30d期间,反应器总氮去除率大于85%,出水总氮浓度维持在6. 2~7. 2 mg·L~(-1).与CANON工艺相比,SNAD工艺提高了总氮去除率,将出水总氮浓度降低了6 mg·L~(-1),使出水氨氮和总氮浓度达到北京市地标一级A标准.  相似文献   
4.
徐贵达  李冬  刘志诚  陶博  张杰 《中国环境科学》2021,41(11):5133-5141
鉴于厌氧氨氧化工艺进水必须包含NO2--N和NH4+-N两种基质,且只能脱氮,为在此基础上进一步实现除磷,提出辅以短程硝化技术,将除磷、脱氮技术相耦合,即短程硝化反硝化除磷串联厌氧氨氧化工艺.生活污水首先进入短程硝化反硝化除磷单元,主要实现NH4+-N转化为NO2--N并去除COD,其部分出水与生活污水原水相混合再进入厌氧氨氧化单元,同时短程硝化反硝化除磷单元于缺氧条件下反硝化吸磷,待反应结束后两个处理单元的出水混合排放.实验结果表明,控制进水混合比为4.2可保证Anammox单元中C/N和NO2--N/NH4+-N值分别为2和1.5,平均△NO2--N/△NH4+-N=1.41,△NO3--N/△NH4+-N=0.12,Anammox脱氮平均占比为85.2%,反硝化与Anammox反应耦合良好.整个系统稳定运行后出水COD、P、NH4+-N、NO2--N和NO3--N浓度分别为15.2,0.85,0.59,5.56,3.33mg/L,TN去除率为89.4%,通过PNDPR-Anammox耦合新工艺成功实现模拟生活污水的高效处理.  相似文献   
5.
李冬  刘志诚  徐贵达  李帅  张杰 《环境科学》2019,40(12):5438-5445
本实验在室温(20℃±3℃)下用2组反应器R1和R~2接种厌氧氨氧化污泥,分别采用间歇恒定曝气和间歇梯度曝气方式启动SNAD工艺,研究了两种不同间歇曝气方式对SNAD工艺启动的影响.结果表明,启动过程中,R~2在各阶段恢复稳定所需的时间更短,SNAD的实际启动速度更快;启动成功后R1和R~2的特征值Δρ(TN)/Δρ(NO_3--N)分别达到6. 46和10. 34,R~2的NOB抑制效果更好;通过周期监测,发现R~2的周期DO波动稳定,R1的周期DO整体逐渐提高、周期末达到0. 5 mg·L~(-1)以上,分析认为R~2中稳定的低DO环境促进了NOB抑制;启动成功后R1和R~2反应器内PN/PS值分别达到2. 745和2. 823,颗粒粒径分别达到365. 8μm和402. 1μm,R~2的颗粒稳定性和沉降性更强,粒径增长更快.  相似文献   
6.
张杰  王玉颖  李冬  刘志诚  曹思雨 《环境科学》2020,41(3):1409-1417
选用SBR反应器R1和R2接种污水处理厂活性污泥,以生活污水为进水,分别采用一次进水-曝气策略和多次进水-曝气策略运行,对运行过程中粒径变化及处理效果进行研究.实验表明,运行56和39 d后R1和R2成功实现污泥颗粒化;稳定运行后R1和R2中出水COD、 TN和TP浓度(mg·L~(-1))分别为29.7、 13.7、 0.31和19.2、 8.1、 0.37,去除率分别为87.7%、 75.6%、 95.1%和90.1%、 85.6%、 94.2%,其中颗粒平均粒径达到740μm和791μm.结果表明,相同运行时间下,R2中的出水NO~-_3-N浓度和出水TP浓度低于R1.运行后期,R1和R2中DPAO占全部PAOs的比值由最初11.17%分别增至25.47%和34.08%.与一次进水-曝气策略相比,采用多次进水-曝气策略运行在启动初期系统内NO~-_3-N浓度较低,PAOs受到的冲击更小,DPAO富集情况更好,除磷性能更好,利于AGS的形成.  相似文献   
7.
徐贵达  李冬  刘志诚  陶博  张杰 《中国环境科学》2021,41(11):5125-5132
反硝化除磷与厌氧氨氧化耦合可进一步降低脱氮除磷所需的碳源,而稳定获取NO2--N是两工艺独立、联合运行的关键.因此,以低C/N生活污水为研究对象,接种絮状污泥及少量长期贮存的好氧颗粒污泥,采用两段梯度曝气,并控制停曝时间(3min:3min),即以高频间歇梯度曝气模式,经60d的富集培养,将其诱导成具有短程硝化反硝化除磷功能的颗粒污泥,并分析了此过程中系统脱氮除磷性能变化.结果表明,稳定时期内,颗粒污泥平均粒径达841μm,SVI为31.23ml/g,颗粒结构致密,沉降性能良好.出水NO3--N小于0.1mg/L,TP<0.7mg/L,NO2--N>15mg/L,实现了P的高效去除和NO3--N的积累,并可为后续耦合Anammox提供稳定NO2--N基质.批次实验结果表明,颗粒中可利用NO2--N为电子受体的DPAOs占达57.63%,其富集提高了系统除磷能力.高频梯度间歇曝气可实现AOB与DPAOs的高度耦合,但仅以间歇曝气难以实现NOB的抑制,后通过在"氨谷点"前段,加入梯度曝气优化实际限氧曝气点,可强化对NOB的抑制,从而实现良好的亚硝酸盐积累.  相似文献   
8.
生活污水预沉淀-SNAD颗粒污泥工艺小试   总被引:1,自引:1,他引:0  
李冬  崔雅倩  赵世勋  刘志诚  张杰 《环境科学》2019,40(4):1871-1877
采用人工配水,在SBR反应器中启动同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)颗粒污泥工艺,随后逐渐降低进水氨氮浓度,低氨氮稳定运行一段时间后通入预沉淀后生活污水,考察SNAD颗粒污泥工艺处理生活污水的脱氮性能及稳定性.结果表明,SNAD工艺启动成功后,氨氮去除率大于98%,总氮去除率在89%左右,随着进水氨氮浓度逐渐降低,亚硝酸盐氧化菌(NOB)活性升高,总氮去除率逐渐下降至75%左右.通入预沉淀生活污水(NH4+-N 52~63 mg·L-1,COD 99~123 mg·L-1)后,平均总氮去除率为73.2%,出水COD浓度在35 mg·L-1以下,最大出水氨氮和总氮浓度为0.7 mg·L-1和12.8 mg·L-1,连续30d以上出水氨氮和总氮浓度达到《城镇污水处理厂污染物排放标准》一级A排放标准,实现了生活污水碳氮同步高效去除的目的.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号