首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   5篇
综合类   6篇
  2023年   1篇
  2022年   3篇
  2019年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
明确硝酸盐的主要来源及转化过程对地下水氮污染防治和水资源开发利用具有重要意义.为了探明滇池周边浅层地下水中硝酸盐污染现状及来源,于2020年雨季(10月)和2021年旱季(4月)在滇池周边共采集73个浅层地下水样,运用水化学和氮氧同位素(δ15N-NO3-δ18O-NO3-)识别浅层地下水中硝酸盐的空间分布、来源及转化过程,并结合同位素混合模型(SIAR)定量评价不同来源氮对浅层地下水硝酸盐的贡献.结果表明,旱季浅层地下水中有40.5%的采样点ρ(NO3--N)超过地下水质量标准(GB/T 14848)Ⅲ类水质规定的20 mg·L-1,雨季超过47.2%的采样点ρ(NO3--N)超过20 mg·L-1.氮氧同位素和SIAR模型分析结果证明了土壤有机氮、化肥氮、粪肥和污水氮是浅层地下水硝酸盐的主要来源,以上氮源对旱季浅层地下水中硝酸盐的贡献率分别为13.9%、11.8%和66.5%,对雨季的贡献率分别为33.7%、31.1%和25.9%,而大气氮沉降贡献率仅为8.5%,对该区浅层地下水中硝酸盐来源贡献较小.硝化作用是旱季浅层地下水中硝态氮转化的主导过程,雨季以反硝化作用为主,且反硝化作用雨季比旱季明显.  相似文献   
2.
为探索浅层地下水氮浓度及水位波动对土壤剖面中氮转化功能基因丰度的影响,以洱海近岸农田原状土壤剖面为对象,研究了模拟常规氮浓度的浅层地下水进行水位波动(SND)和持续淹水(SNF),以及无氮浓度的浅层地下水位波动(0ND)后土壤剖面氮浓度和氮转化功能基因丰度的变化,探讨了土壤因子与功能基因丰度的关系。结果表明:SNF、SND和0ND处理较试验前土壤剖面中溶解性总氮(TDN)浓度分别降低了44%、21%和30%,NO3-N浓度分别降低了55%、28%和38%。同时,0ND和SNF处理较SND处理土壤剖面中反硝化功能基因丰度分别降低20%和1%,厌氧氨氧化功能基因丰度则分别增加68%和7%,硝化功能基因丰度分别降低34%和增加23%,土壤含水率(MC)、NH4+-N、NO3-N和TDN均为功能基因丰度变化的重要驱动因子。土壤剖面持续淹水会显著降低溶解性氮浓度,浅层地下水波动及水中氮浓度引起的土壤剖面干湿交替和氮浓度变化是氮转化功能基因丰度变化的主要驱动力。  相似文献   
3.
为揭示湖泊近岸浅层地下水升降对菜地土壤剖面硝化与反硝化功能微生物基因丰度的影响,以洱海湖滨带菜地土壤剖面为研究对象,通过模拟地下水升降过程,分析了水位升高(S1)、水位降低(S2)及落干(S3)过程中土壤剖面AOA-amoA、AOB-amoA、nirK、nirS、nosZ基因丰度的变化特征,探讨了功能基因与土壤环境因子的耦合关系.结果表明:S3阶段的土壤剖面AOA-amoA和AOB-amoA基因丰度显著高于S1和S2;S1阶段的土壤剖面nirK、nirS、nosZ基因丰度均显著高于S2和S3.AOA-amoA基因丰度显著高于AOB-amoA基因丰度,nirS基因丰度显著高于nirK、nosZ基因丰度;不同取样时期的土壤剖面AOA-amoA、AOB-amoA、nirK、nirS、nosZ基因丰度均表现为A层B层C层D层.水位升降对土壤剖面AOA-amoA、AOB-amoA、nirK、nirS、nosZ基因丰度有显著影响,且AOA-amoA和nirS基因对水位升降更敏感,分别在硝化与反硝化作用中占主导地位;pH、有机碳(SOC)、全氮(TN)为功能基因AOA-amoA、AOB-amoA的环境驱动因子,而功能基因nirK、nirS、nosZ的环境驱动因子为土壤含水量(W)、铵态氮(NH~+_4-N)、硝态氮(NO~-_3-N)、TN、SOC、pH.该研究结果可为揭示浅层地下水升降过程中菜地土壤剖面氮素循环的微生物学机制提供科学依据.  相似文献   
4.
高原湖泊周边浅层地下水:磷素时空分布及驱动因素   总被引:1,自引:1,他引:0  
高原湖泊周边农田磷肥的大量施用和城镇村落的聚集造成了土壤剖面磷素不断累积和含磷污染物的大量排放,加剧了湖泊周边浅层地下水的磷污染,磷随湖泊周边区域浅层地下径流入湖也影响着高原湖泊的水质安全. 2019~2021年雨季和旱季,通过对云南8个湖泊周边农田和居民区水井进行监测,分析了452个浅层地下水样中磷浓度的时空差异及驱动因素.结果表明,季节变化和土地利用影响了浅层地下水中磷浓度及其组成,表现为雨季浅层地下水中磷浓度大于旱季,农田大于居民区;溶解性总磷(DTP)是总磷(TP)的主要形态,占75%~81%,溶解性无机磷(DIP)是DTP的主要形态,占74%~80%.8个湖泊周边近30%的样本TP浓度已超过地表水Ⅲ水标准(GB 3838),其中,洱海(52%)、杞麓湖(45%)、星云湖(42%)和滇池(29%)湖泊周边地下水磷的超标率远高于阳宗海(16%)、抚仙湖(13%)、程海(6%)和异龙湖(5%).影响浅层地下水磷浓度的关键因子是土壤剖面中水溶性磷(WEP)、含水率(MWC)、土壤有机质(SOM)、总氮(TN)、 pH和浅层地下水中pH、水位(P<0.05).土壤WEP、 SOM...  相似文献   
5.
洱海流域稻鸭共作对稻田温室气体排放和水稻产量的影响   总被引:5,自引:0,他引:5  
稻季是水旱轮作生态系统温室气体排放的主要时期,探索有效措施实现稻季温室气体减排和水稻增产已成为当前研究的热点.稻鸭共作是减少稻季温室气体排放的有效措施之一,而确定合理的稻鸭共作密度对确保洱海流域水稻产量基础上实现温室气体减排具有重要意义.该研究通过设置不同稻鸭共作密度试验,采取密闭静态箱—气相色谱法研究了稻鸭共作对温室气体排放规律、排放量及全球增温潜势(GWP)的影响.结果表明:水稻生育期,CH_4和N_2O均在分蘖期和结实期出现排放峰;CH_4排放通量、累计排放量和总排放量大小均为常规处理(CT)低密度鸭处理(LDD)高密度鸭处理(HDD)空白处理(CK),而N_2O为HDDLDDCTCK.与CT相比,CK、LDD、HDD的CH_4排放总量分别降低45%、18%、25%,N_2O排放总量分别降低8%、增加11%和37%,温室气体综合增温潜势分别降低41%、14%、17%.田面水DO、NH~+_4-N、NO~-_3-N及土壤温度是引起温室气体CH_4和N_2O排放差异的主要因素.不同处理的水稻产量为LDDCKCTHDD.合理的稻鸭共作密度降低CH_4排放,增加N_2O排放,减缓全球增温潜势,提高了水稻产量.兼顾水稻产量和温室气体减排效果,LDD处理综合效益最好.  相似文献   
6.
高原湖泊周边浅层地下水作为当地重要的生产和生活水源之一,由于受到地表氮素投入负荷、降雨和灌溉等因素驱动下,浅层地下水NO-3-N污染较为严重,威胁着高原湖泊水质安全.2020~2021年雨季和旱季从云南8个高原湖泊周边农田和居民区的水井中采集了463个浅层地下水样,分析了地下水中氮的污染特征及驱动因素.结果表明,浅层地下水中ρ(TN)、ρ(NO-3-N)、ρ(ON)和ρ(NH+4-N)平均值分别为24.35、 15.15、 8.41和0.79 mg·L-1, 8个湖泊周边近32%的浅层地下水样NO-3-N浓度超过地下水Ⅲ类水质要求(GB/T 14848),其中,洱海、杞麓湖和滇池湖泊周边地下水NO-3-N浓度超标率最高,其次是星云湖、阳宗海和异龙湖,最小为抚仙湖和程海.土地利用和季节变化影响着浅层地下水中各形态N浓度及其组成,农田区浅层地下水中各形...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号