首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   5篇
  国内免费   3篇
安全科学   1篇
废物处理   3篇
综合类   10篇
基础理论   1篇
污染及防治   1篇
  2023年   2篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
采用纳滤膜处理电解锰生产过程中产生的含锰废水,考察了操作压力、阻垢剂和反冲洗等因素对膜通量和各金属离子截留率的影响。实验结果表明:操作压力越大,膜通量越大,且膜通量随运行时间延长下降得越快;在操作压力为2.0 MPa的条件下,纳滤膜对Mg2+的截留率为90.69%,对Mn2+的截留率为89.72%,对Ca2+的截留率最高,达100%;加入阻垢剂后,纳滤膜的膜通量比未加入阻垢剂时的膜通量略大;反冲洗4次后,膜通量均可完全恢复。  相似文献   
2.
污水生物处理中抗生素的去除机制及影响因素   总被引:3,自引:1,他引:2  
张翔宇  李茹莹  季民 《环境科学》2018,39(11):5276-5288
环境中的抗生素污染日益严重,其诱导产生的抗生素抗性成为人类健康的重大威胁.通过对世界多地污水处理厂进、出水中抗生素浓度水平的文献调研汇总,发现当前的污水处理工艺不能实现抗生素的有效去除.吸附和生物降解是污水中抗生素的主要去除途径,因此本文深入地分析了吸附的作用机制和不同种类抗生素吸附程度的差异;从生物降解性能、降解菌和降解产物等方面分析抗生素在污水生物处理过程中的生物降解作用;分析讨论了水力停留时间、污泥停留时间、温度和工艺选型(传统活性污泥法、膜生物反应器和生物脱氮工艺)等污水生物处理工艺的运行条件对吸附和生物降解途径的影响,进而解析对抗生素去除效果的影响.菌群组成、生长基质供应情况和微污染物共存情况等因素对污水生物处理中抗生素迁移转化的影响需要更深入地研究.  相似文献   
3.
采集北京市某一地下停车场内环境空气样品,利用气相色谱-质谱/氢火焰离子化检测器(GCMSD/FID)测定了挥发性有机物(VOCs)的组成,分析其浓度特征、组分特征和影响因素,运用特征物种比值法和正定矩阵因子分析模型(PMF)解析VOCs来源,采用健康风险评估模型定量评估部分VOCs的健康风险.结果表明,地下停车场内VOCs平均浓度为514.16μg·m-3,其中烷烃占比最大(43.76%),其次是芳香烃(28.89%)、烯烃(10.97%).影响停车场内VOCs浓度的主要因素包括机动车运行工况、机动车进出车次及扩散条件.冷启动工况、较多的出入车次和不利的扩散条件会导致VOCs浓度显著上升.苯/乙苯和苯/甲基叔丁基醚(MTBE)的均值分别为1.5和0.8,表明机动车尾气和汽油挥发是地下停车场内VOCs的主要来源. PMF解析结果表明地下停车场内VOCs的首要来源为机动车尾气源(44.58%),汽油挥发源和汽车内饰挥发源分别贡献24.56%和9.18%.其中,汽油挥发源在08:00—10:00时段贡献最大,机动车尾气源在16:00—18:00时段贡献最大.健康风险评估...  相似文献   
4.
目的对锡铋合金表面粗糙度特征进行研究分析,提高表面加工质量。方法采用正交试验设计方法,以最小表面粗糙度作为优化指标,以主轴转速、铣削深度、进给速度、铣削宽度作为影响因素,进行精密铣削试验研究。结果利用方差分析确定了进给速度是锡铋合金铣削表面粗糙度最重要的影响因素,并基于田口方法优化分析得到了锡铋合金铣削加工工艺最优组合。结论采用田口法对锡铋合金铣削工艺参数优化,有效地减少了加工表面粗糙度,提高了工件表面质量。  相似文献   
5.
将活性炭法烟气脱硫脱硝工艺和循环流化床技术相结合,在自行设计的试验台上进行烟气同时脱硫脱硝试验。结果表明,活性炭给料量及烟气流量对脱硫脱硝效果的影响较小;在烟气排放温度范围(100~200℃)内,升高温度对脱硝有促进作用,对脱硫有抑制作用;水蒸气对脱硫效果的影响大于脱硝,其最佳工作区域为10%~12%(质量分数);SO2浓度的增加会降低脱硫脱硝效果,而NO浓度的增加对脱硫有促进作用,对脱硝影响不大;当NH3∶NO摩尔比达到1∶1时,可得到最佳脱硝效果,此时工艺的脱硫率>70%,脱硝率>40%。  相似文献   
6.
以重金属污染土壤为研究对象,比较了铁屑、蒙脱石、碳酸钙和羟基磷灰石4种稳定剂对土壤中Pb,Zn,Cd,Cu 4种重金属的稳定效果。实验结果表明,4种稳定剂稳定效率的大小顺序为:羟基磷灰石碳酸钙蒙脱石铁屑。当稳定剂质量分数为10%时,羟基磷灰石、碳酸钙、蒙脱石和铁屑对Pb,Zn,Cd,Cu 4种重金属的平均稳定效率分别为99.63%,98.53%,97.15%,86.95%。未加稳定剂时,土壤中的Pb以残渣态为主,Zn以残渣态和可交换态为主,Cd以残渣态为主,Cu以残渣态和可交换态为主;加入稳定剂后,土壤中4种金属可交换态的所占比例(简称占比)均显著降低,还原态的占比明显增大,残渣态的占比略有增大,氧化态的占比基本保持不变。  相似文献   
7.
以重金属污染土壤为研究对象,比较了铁屑、蒙脱石、碳酸钙和羟基磷灰石4种稳定剂对土壤中Pb,Zn,Cd,Cu 4种重金属的稳定效果。实验结果表明,4种稳定剂稳定效率的大小顺序为:羟基磷灰石﹥碳酸钙﹥蒙脱石﹥铁屑。当稳定剂质量分数为10%时,羟基磷灰石、碳酸钙、蒙脱石和铁屑对Pb,Zn,Cd,Cu 4种重金属的平均稳定效率分别为99.63%,98.53%,97.15%,86.95 %。未加稳定剂时,土壤中的Pb以残渣态为主,Zn以残渣态和可交换态为主,Cd以残渣态为主,Cu以残渣态和可交换态为主;加入稳定剂后,土壤中4种金属可交换态的所占比例(简称占比)均显著降低,还原态的占比明显增大,残渣态的占比略有增大,氧化态的占比基本保持不变。  相似文献   
8.
为探究青岛近海不同天气下气溶胶中金属元素的浓度分布特征,于2012年4~5月,2012年8月~2013年3月在青岛近海采集了总悬浮颗粒物(TSP)样品,利用电感耦合等离子体质谱法(ICP-MS)和电感耦合等离子体原子发射光谱法(ICPAES)分析了主要微量金属元素.结果表明,Al、Ca、Fe、Na、K和Mg是TSP中主要的金属元素,质量浓度占所测元素总浓度的94.2%.TSP及金属元素浓度月变化明显,Fe、Al、K、Ca、Mg、Zn、Ba、Mn、Ti、Sr和Li均在11月和1月浓度最高,Be、Sc、Co、Ni和Cr在1月最高,Na在8、11和2月较高,12月最低,Pb在1月和2月最高,8月和12月最低.富集因子表明Be、Co、Al、Ca、Fe、K、Mg、Mn、Sr和Ti主要受自然源影响,Li、Cr、Ni、Zn、Ba和Na除受自然源外,还受部分人为源影响,Pb主要来自人为源.不同天气状况对TSP及其金属元素浓度影响较大,除Ti外,所测元素浓度均在烟雾天最高.与晴天相比,烟雾天除Ti外,其余元素均升高,增幅为1~4倍,雾天Li、Be、Cr、Ni、Al、Fe、Mg和Mn变化不大,Pb和Na升高较多,Co、Ca和Ti降低较多,霾天Cr、Co和Ti降低,其余元素浓度升高,增幅为1~3倍.大部分元素在晴天富集因子最小,雾天富集因子最大.Ni、Zn、Ba、K、Na、Pb和Sr富集因子为晴<霾<烟雾<雾,Fe和Mn为晴<烟雾<霾<雾,Al和Mg为晴<雾<霾<烟雾,其余金属不同天气下富集因子的变化规律各不相同.  相似文献   
9.
采用预浓缩仪-气相色谱/质谱(GC/MS)联用方法测定了2020年夏季青藏高原高海拔背景站点纳木措(海拔4730 m)的卤代烃浓度,结合后向轨迹模型分析了采样点卤代烃传输轨迹及潜在源区域。结果表明:纳木措站大气中主要卤代烃为氯甲烷(3.81×10-10)、一氟三氯甲烷(CFC-11,2.32×10-10)、四氯化碳(9.30×10-11)、三氯三氟乙烷(CFC-113,8.60×10-11)和二氯甲烷(6.80×10-11);纳木措站的氟氯烃化合物(CFCs)浓度在全球范围其他背景站点中处于较低水平。采样点CFC-11和CFC-113浓度变化之间呈显著相关(r=0.928,P<0.01),分析认为是受大气本底传输的影响;而其浓度的变化幅度较大,与现有其他高海拔背景站点特征一致,大于平原地区两者浓度变化幅度。除CFC-11和CFC-113外,其他卤代烃化合物日变化幅度均较小(2%~12%),无明显昼夜变化特征。后向轨迹模型分析结果显示,四氯化碳浓度可能受印度等周边地区传输的...  相似文献   
10.
利用羟基铁对硅藻土进行覆膜,探索了其制备方法并利用其处理含砷废水。制备1 g覆膜硅藻土需添加0.4 mL 1mol/L的Fe(NO3)3溶液混合均匀后加入0.05 mL 4 mol/L的NaOH溶液搅拌至混合物呈泥状,在110℃下烘干后粉碎,其用量为1 g/L。利用该方法制备覆膜硅藻土可大幅增加硅藻土的比表面积和铁含量,分别提升了76%和2134.5%,有效的增强了其吸附能力。通过实验,验证了覆膜硅藻土的除砷能力,且随砷浓度升高而升高;反应开始后1 h后可接近反应平衡,最大吸附量可达37.14 mg/g。覆膜硅藻土除砷过程受到pH值的影响,随pH值的升高除砷率将先升后降,在pH值为4~7.5时,具有较强除砷能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号