首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   7篇
综合类   7篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
南京城市大气氨-铵的高频演化及其气粒转化机制   总被引:2,自引:1,他引:1  
本研究于2018年秋季利用在线气体和气溶胶组分监测仪以高时间分辨率连续测定南京市大气中的气体(主要是NH_3)与二次无机气溶胶(主要是NH_4~+、NO_3~-和SO_4~(2-))浓度,借此研究污染和非污染期城市大气NH_3和NH_4~+的演化规律,进而探讨NH_3-NH_4~+气粒转化过程中的化学机制.结果表明,观测期间NH_3和NH_4~+浓度的平均值(±1σ)分别为(15. 3±6. 7)μg·m-3和(11. 3±7. 8)μg·m-3,且日变化在污染和非污染事件中呈现出显著的差异.综合在线观测的NH_3和NH_4~+浓度数据,通过计算潜在源贡献因子,分析了NH_3和NH_4~+的潜在贡献源区在重污染过程受长距离污染传输影响较小,证明城市也是NH_3排放的重要热点地区.进一步分析发现,NH_3-NH_4~+的气粒转化是影响NH_3和NH_4~+日变化的主要驱动因子.具体体现在:低温、高湿(温度在7. 5~12. 5℃,湿度在50%~90%)时,NH_3和NH_4~+的气固转化速度较快,NH_3与酸性物质反应生成更多的NH_4~+,使得(NH4)2SO4和NH4NO3的形成从而导致污染事件的加剧.研究结果有助于厘清城市大气NH_3的来源和转化机制及其对颗粒物的潜在贡献.  相似文献   
2.
本研究于2018年夏季和冬季,在南京使用吸附浓缩在线监测系统(AC-GCMS 1000)对大气中的挥发性有机化合物(VOCs)进行测量,估算其所造成的健康风险并解析VOCs所造成致癌与非致癌风险的污染来源.结果表明,采样期间南京市冬季φ(总VOCs)为105.7×10-9,为夏季(34.5×10-9)的3.1倍,以烷烃为主要物种.在健康风险方面,冬季毒性VOCs所造成的非致癌风险及致癌风险值分别为9.43和1.0×10-4,是夏季非致癌(5.58)与致癌风险(2.69×10-5)的1.7和3.8倍,而丙烯醛和1,2-二氯乙烷是非致癌与致癌风险的主要物种.最后,利用PMF模型解析5个VOCs的污染来源,分别是有机涂料溶剂源、生物质燃烧源、车辆排放源、石油化工源和溶剂源2.车辆排放源是造成致癌风险的最大来源(夏季28.2%和冬季48.0%).因此,建议有针对性地控制毒性VOCs及车辆尾气的排放,以减小可能对公众健康产生的危害.  相似文献   
3.
对流层臭氧(O3)主要由氮氧化物(NOx)和挥发性有机物(VOCs)经过一系列光化学反应生成,反应过程呈现复杂的非线性关系.为深入了解O3的光化学特征及生成机制,利用2018年夏季大气O3与VOCs的观测数据,结合大气零维框架模拟模型F0AM-MCM,研究O3超标日和非O3超标日的O3光化学特征之间的差异性.观测结果表明,O3超标日期间φ(O3)和φ(TVOCs)的平均值分别为47.8×10-9和49.0×10-9,为非O3超标日期间O3(26×10-9)和TVOCs(30×10-9)体积分数的1.8倍和1.6倍.使用F0AM模型,借助EKMA曲线和RIR分析等识别O3敏感性,发现南京市O3超标日和非O3超标日O3的形成均主要受VOCs和NOx的协同控制.F0AM-MCM模拟结果表明,在O3超标日,·OH和HO2的日平均混合比分别是非O3超标日的1.3倍和1.8倍,表明O3超标日期间具有更强的大气氧化能力,且·OH和HO2的形成和损失速率也有明显的增加,表明自由基循环的增强.此外,O3超标日的O3生成速率明显高于非O3超标日,从而导致了O3超标日的O3净生成速率明显高于非O3超标日.以上发现提高了对南京夏季O3超标日大气O3光化学特征的认识.  相似文献   
4.
2015~2019年南京北郊碳质气溶胶组成变化   总被引:2,自引:2,他引:0  
碳质气溶胶是大气细颗粒物的重要组成,对空气质量、人体健康和气候变化有着重要影响.为了探究碳质气溶胶在减排背景下的长期变化,本研究测定了南京北郊5 a(2014年12月17日至2020年1月5日) PM2.5样品的有机碳(OC)和元素碳(EC)浓度.结果表明,ρ(OC)和ρ(EC)5a平均值分别为(10.2±5.3)μg·m-3和(1.6±1.1)μg·m-3,其中OC占PM2.5的31.1%,EC占PM2.5的5.2%.OC和EC均呈现出冬高夏低的季节特征.通过非参数的Mann-Kendall检验和Sen’s斜率发现,OC和PM2.5的浓度整体呈显著下降趋势[OC:P<0.000 1,-0.79μg·(m3·a)-1,-0.29%·a-1; PM2.5:P<0.000 1,-4.59μg·(m3·a)-1,-1.5...  相似文献   
5.
杨笑影  曹芳  林煜棋  章炎麟 《环境科学》2020,41(6):2519-2527
连续收集2016年12月至2017年11月期间的南京降水样品,分析主要无机离子和有机酸的化学特征及季节变化,运用正交矩阵因子模型法(PMF)进行源解析.结果表明,南京地区降水pH均值为5.6,离子总浓度雨量加权平均值为297.3μmol·L~(-1),阳离子浓度依序为NH~+_4 Ca~(2+) K~+ Na~+ Mg~(2+),阴离子浓度则为NO~-_3 SO~(2-)_4 Cl~- F~-.总有机酸浓度雨量加权平均值为2.86μmol·L~(-1),占总阴离子的2.2%. CHO~-_2、C_2H_3O~-_2和C_2O~(2-)_4是南京降水主要的有机酸,年雨量加权平均值分别是1.35、 1.05和0.26μmol·L~(-1).离子浓度总体表现出明显的冬春高和夏秋低的季节性变化,而总有机酸浓度夏季最高,春季次之,冬季最低,生长季节高于非生长季节,与较多的植被排放有关.运用甲酸和乙酸的比值(F/A)判定南京降水有机酸的主要来源为植物生长释放,有机物燃烧,机动车排放等直接来源,大气氧化等间接来源较少.南京降水无机离子和有机酸主要有5个来源贡献,海源和二次无机生成、生物质燃烧、陆源和垃圾焚烧、二次有机生成、生物排放和生物源二次生成,分别贡献40.0%、 22.2%、 22.0%、 14.5%及1.3%.  相似文献   
6.
南京工业区秋季大气挥发性有机物污染特征及来源解析   总被引:19,自引:19,他引:0  
曹梦瑶  林煜棋  章炎麟 《环境科学》2020,41(6):2565-2576
2018年秋季在南京利用大气挥发性有机物(volatile organic compounds, VOCs)吸附浓缩在线监测系统(AC-GCMS 1000)对大气VOCs进行连续观测,以了解其化学特征、臭氧生成潜势和污染来源.结果表明,南京秋季大气VOCs体积分数为(64.3±45.6)×10~(-9),以烷烃(33.1%)、含氧挥发性有机物(OVOCs)(22.3%)及卤代烃(21.8%)为主.VOCs的昼夜变化呈"双峰型"变化特征,高值主要出现在清晨的06:00~07:00及夜间的18:00~20:00,主要受机动车排放及气象要素的共同影响.秋季南京VOCs的臭氧生成潜势(ozone formation potential, OFP)为267.1μg·m~(-3),主要贡献物种是芳香烃类化合物(55.2%)和烯烃类化合物(20.8%).PMF受体模型源解析确定5个VOCs来源,分别是交通排放(34%)、工业排放(19%)、LPG排放(17%)、涂料及有机溶剂挥发(16%)以及生物质燃烧和燃煤排放(14%),因此控制南京工业区秋季大气污染应主要着力于交通及工业排放的治理.  相似文献   
7.
南京北郊黑碳气溶胶分布特征及来源   总被引:5,自引:5,他引:0  
谢锋  林煜棋  宋文怀  鲍孟盈  章炎麟 《环境科学》2020,41(10):4392-4401
黑碳(black carbon,BC)是含碳物质燃烧排放所产生的大气颗粒物(particulate matter,PM)中一种重要组分,其对辐射效应表现为对太阳辐射的吸收和散射,影响着地气系统的能量交换.本研究于2019年1~5月在南京北郊利用黑碳仪AE33(aethalometer,magee)测量了黑碳气溶胶浓度数据,对其日夜变化和季节变化进行分析,并筛选出污染天与清洁天,对其特征和来源进行分析.结果显示采样期间黑炭气溶胶的平均浓度为(3.8±2.3)μg ·m-3,冬季浓度为春季的1.3倍.BC浓度呈现明显的日变化,BC高值出现在日间交通高峰时间段,受到交通排放的影响较大.Ångström指数α冬春整体差异不大,春季为1.32冬季为1.30,此结果也指出BC排放源以机动车排放为主.此外,针对采样期间污染天与清洁天的BC来源特征进行分析,发现污染天机动车排放源占比为68%~87%,清洁天为72%~86%,清洁天来源小幅波动但均以机动车排放源为主,污染天相对而言存在一定的机动车源减少生物质和煤炭燃烧源增加的情况,取决于污染时段的排放情况,利用BC/CO(0.005)进一步验证了上述源解析结果.通过PSCF和CWT分析可以得到南京北郊大气BC颗粒物以本地来源为主,但冬季可能存在来自东南地区的机动车排放来源,春季可能存在来自西南地区的生物质及煤炭燃烧来源.总体看来南京北郊黑碳气溶胶分布以冬高春低,并存在明显日夜变化,主要来源为本地的机动车排放为主.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号