首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   3篇
  国内免费   5篇
综合类   11篇
基础理论   3篇
污染及防治   1篇
  2021年   1篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2011年   3篇
  2009年   4篇
  2008年   1篇
  2006年   1篇
  2003年   2篇
排序方式: 共有15条查询结果,搜索用时 25 毫秒
1.
沼气高值化利用与净化提纯技术   总被引:2,自引:0,他引:2  
基于户用沼气池以及传统工业沼气锅炉的低附加值沼气利用方式已经不适合沼气产业规模化和商业化的发展方向,在分析我国沼气资源潜力的基础上,重点介绍了沼气制备车用压缩天然气、管道天然气、热电联产等高值化利用方式及相关标准;针对高值化利用方式,分析比较了现有的高压水洗、物理吸收、化学吸收、变压吸附、膜分离和深冷分离等几种沼气净化提纯工艺的技术及应用情况,介绍了高效沼气脱硫技术,并指出氧、氮含量源头控制的重要性。  相似文献   
2.
生物质气化洗焦废水的预处理和微生物降解   总被引:5,自引:0,他引:5  
为了对生物质气化洗焦废水进行深度处理,达到废水排放标准,采用物理过滤和微生物降解相结合的方法,对洗焦废水的原液进行处理。实验结果表明,用木屑、颗粒活性碳、微生物降解的连续步骤处理生物质气化洗焦废水,可达到理想的生物质气化洗焦废水COD的去除效果。  相似文献   
3.
为了提高能源回收效率,采用大米、土豆、生菜、瘦肉、花生油和榕树叶作为实验原料,模拟有机垃圾中普遍存在的淀粉、膳食纤维、蛋白质、脂肪和木质纤维类成分,进行厌氧发酵产氢以及对其剩余物厌氧发酵产甲烷.结果表明.在厌氧发酵产氢阶段,整个过程没有甲烷生成,大米、土豆、生菜、瘦肉、花生油和榕树叶的氢气产率分别为125、103、35、0、5和0 mL g-1(VS),能源回收效率分别为7.9%、6.8%、1.9%、0、0.1%和0.大米、土豆和生菜的氢气浓度分别为34%~59%、41%~56%和37%~70%,整个产氢阶段没有甲烷生成.在厌氧发酵产甲烷阶段,上述原料的甲烷产率分别为232、237、148、278、866和50 mL g-1(VS),生物气中甲烷含量分别为42%~70%、57%~71%、73%~77%、59%~73%、68%~80%和54%~74%.厌氧发酵联产氢气和甲烷整个过程上述原料的能源回收效率分别为56.3%、58.4%、28.8%、39.2%、81.2%和8.8%,总COD去除率分别为72.30%、81.70%、32.63%、47.59%、97.46%和11.29%.图4表5参35  相似文献   
4.
作为厌氧发酵原料的水分选有机垃圾特性分析   总被引:2,自引:1,他引:1  
对水分选有机垃圾(WSOFMSW)的固体有机部分(SOF)和气浮污泥部分(AFS)进行采样,分析它们的成分及生化特性,并在此基础上进行小试规模(30L)的厌氧发酵产甲烷实验.结果表明:SOF的惰性部分为18%,可降解部分(挥发性固体)为72%,其中,碳水化合物、蛋白质和脂肪分别为40.4%、21.8%和9.8%;AFS的惰性部分为2%,可降解部分为82.4%,其中,碳水化合物、蛋白质和脂肪分别为53.5%、19.2%和9.7%.SOF的金属含量比AFS高,主要金属元素为Ca、Fe、Al、K、Na和Mg.在重金属中,Zn、Mn、Ni、Hg和Cr的含量超过堆肥产品的限制值.WSOFMSW在标准温度和压力(0 ℃ 和1.013×105 Pa ,文中以STP表示)下的理论产甲烷能力为484 m3 ·t-1(以VS计),实验甲烷产率为273 m3 ·t-1,中试甲烷产率为245 m3 ·t-1,每吨湿WSOFMSW产甲烷32 m3.水分选有机垃圾在厌氧消化过程中不会发生重金属、挥发性脂肪酸和氨氮抑制,但是厌氧消化启动时间较长,需要20 d.  相似文献   
5.
由生物质废弃物催化裂解制取氢气是一种可再生的制氢方法,本研究采用2段加热管式反应器,前段装生物质,后段装催化剂,用以研究生物质催化裂解制取氢气的特性,并提出潜在氢产率的概念对生物质制氢的经济技术可行性进行深入的分析.测试的3种生物质废弃物为:松木粉、木质素和纤维素,测试温度为600~700℃.实验结果表明,加入催化剂后3种物料的产氢率从5.48~15.06g/kg增加到12.94~37.73g/kg;催化剂对潜在产氢率的影响较小,加入催化剂前后的变化范围为:36.25~98.86g/kg到37.40~116.98g/kg.生物质废弃物催化裂解产氢率与相同温度下空气-水蒸气气化的氢产率相当,实验结果证明,生物质废弃物催化裂解是一种有效的制氢方法.  相似文献   
6.
梧州市生活垃圾高固体厌氧发酵产甲烷   总被引:1,自引:1,他引:0       下载免费PDF全文
以梧州市的生活垃圾为原料,针对其难降解部分含量相对较高的特点,进行高浓度中温[(35±2)℃]批式厌氧消化实验,主要研究TS的3个设置浓度对厌氧消化稳定性及性能的影响.结果表明,分别为20%、25%和30%的3种TS均能实现稳定的产甲烷过程,在整个过程中没有明显产生挥发性脂肪酸的抑制,pH能实现自稳态调控;TS为20%、25%和30%的厌氧消化的累积产甲烷量为93.06、105.92和117.23L/kgVS;较低的总固体浓度有助于缩短厌氧发酵周期,而较高浓度可提高产甲烷效率.  相似文献   
7.
不同接种条件下微生物燃料电池产电特性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
比较了11种不同来源的接种物对微生物燃料电池产电性能的影响,并考察了接种污泥的TCOD和pH值等特性对电池产电情况的影响.结果表明,以华南农业大学资源环境学院新肥室沼气池污泥为接种物的燃料电池产电效果最好,产生的最大电压为0.53V(外电阻为500Ω),最大功率密度达到9.12W/m3.污泥的初始TCOD越高,所产生的电能越多;而pH值在5.6~7.8范围内时,对MFC产电能力的影响不大.通过扫描电镜对阳极表面微生物的观察发现,不同接种物电池阳极富集的微生物存在很大差异,这可能是影响微生物燃料电池产电性能的最主要因素之一.  相似文献   
8.
为了提高能源回收效率,采用大米、土豆、生菜、瘦肉、花生油和榕树叶作为实验原料,模拟有机垃圾中普遍存在的淀粉、膳食纤维、蛋白质、脂肪和木质纤维类成分,进行厌氧发酵产氢以及对其剩余物厌氧发酵产甲烷. 结果表明,在厌氧发酵产氢阶段,整个过程没有甲烷生成,大米、土豆、生菜、瘦肉、花生油和榕树叶的氢气产率分别为125、103、35、0、5和0 mL g^-1(VS),能源回收效率分别为7.9%、6.8%、1.9%、0、0.1%和0. 大米、土豆和生菜的氢气浓度分别为34%-59%、41%-56%和37%-70%,整个产氢阶段没有甲烷生成. 在厌氧发酵产甲烷阶段,上述原料的甲烷产率分别为232、237、148、278、866和50 mL g^-1(VS),生物气中甲烷含量分别为42%-70%、57%-71%、73%-77%、59%-73%、68%-80%和54%-74%. 厌氧发酵联产氢气和甲烷整个过程上述原料的能源回收效率分别为56.3%、58.4%、28.8%、39.2%、81.2%和8.8%,总COD去除率分别为72.30%、81.70%、32.63%、47.59%、97.46%和11.29%. 图4 表5 参35  相似文献   
9.
针对目前沼液中高浓度氮氨氮对空气和水质的不良影响,探究在不同pH条件下小球藻对氨氮的处理能力以及生物质生产潜力。在初始ρ(NH3-H)为120~130mg/L,设置4组pH为6.5、7.5、8.5、9.5的模拟废水中培养小球藻。结果表明:pH为6.5~7.5时更适合氨氮的去除。随着pH值升高,pH>8.5时产生的高浓度游离氨对小球藻生长起主要抑制作用。基于藻细胞内叶绿素的积累,小球藻更偏好pH为6.5~8.5的实验环境。小球藻在pH=7.5时油脂产率达到最高为0.30 g/L/d,这与小球藻生长的适宜pH条件一致。综合考虑小球藻对氨氮的去除率及生长和油脂的积累情况,在利用小球藻处理沼液时,将pH控制在6.5~7.5区间内会更有利于氨氮的去除和废水的资源化利用。  相似文献   
10.
混凝法处理生物质气化洗涤废水研究   总被引:5,自引:0,他引:5  
本文介绍了生物质气化洗涤废水的水质特点,系统地研究了该废水混凝沉淀处理方法及其机理,考察了混凝剂聚合氯化铝(PAC)、聚合硫酸铁(PFS)、三氯化铁、硫酸铝、硫酸亚铁,以及高分子絮凝剂聚丙烯酰胺(PAM)对该废水的处理效果。对投药量、pH值、温度、搅拌强度和时间,以及无机混凝剂与有机高分子絮凝剂配合使用的情况进行了研究,结果表明,PAC对该废水的处理效果优于其他药剂,其最佳使用条件是:投加量150-200mg/L,pH值8-8.5,水温30-40℃,PAH可增强混凝的处理效果,其使用量为3-5mg/L。混凝沉淀处理可有效去除该废水的悬浮物、浊度,以及部分色度和COD。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号