首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   14篇
  国内免费   26篇
综合类   57篇
基础理论   3篇
评价与监测   2篇
社会与环境   1篇
  2023年   6篇
  2022年   6篇
  2021年   8篇
  2020年   3篇
  2019年   8篇
  2018年   5篇
  2017年   6篇
  2015年   4篇
  2014年   7篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.
南京秋冬季典型霾污染过程及边界层特征分析   总被引:1,自引:0,他引:1  
针对近年来南京地区秋冬季的几次典型秋冬季霾污染过程,利用地面空气污染监测资料、探空资料、常规气象观测资料,对霾污染过程的特征,特别是边界层特征进行综合分析。结果表明,秋收季节秸秆燃烧对于南京及周边地区的空气质量有明显影响,局地空气污染指数飙高。南京及周边地区几次霾污染过程,均出现逆温层,贴地逆温、脱地逆温均影响霾的形成。5次霾污染过程中,均有观测时次混合层高度小于200 m,并且低混合层高度持续时间与API高值时间一致。总体上,混合层高度与API(AQI)呈相反趋势。  相似文献   
2.
南京地区一次灰霾天气的微脉冲激光雷达观测分析   总被引:3,自引:0,他引:3  
利用微脉冲激光雷达(MPL)对2012年10月南京地区的一次灰霾天气进行了不间断观测,结合地面气象要素和PM10、PM2.5质量浓度资料分析了此次污染过程颗粒物质量浓度、气象要素、气溶胶垂直方向光学特性和混合层高度(MLH)日变化趋势以及相关性并与11月11~12日非灰霾天气做了消光系数和MLH的比较.结果表明,本次灰霾天气颗粒物浓度与近地面消光系数日变化较相似,基本上呈现夜间高午后低的趋势;灰霾期间MLH峰值滞后于地面温度峰值2h,MLH与PM2.5呈现负相关关系,两者相关系数为-0.57;霾天MLH远低于非灰霾天;霾期间近地面消光系数大部分时刻大于1.0km-1,远大于非霾日0.1~0.25km-1范围的消光系数.  相似文献   
3.
福州市PM_(2.5)污染过程中大气边界层和区域传输研究   总被引:5,自引:0,他引:5  
以福建省会福州市2013年1月空气质量变化为对象,分析大气边界层变化和周边区域污染物传输对福州市大气颗粒物PM2.5的影响.利用福州市2013年1月逐日地面和探空观测资料以及NCEP提供的2013年1月FNL分析资料,通过大气边界层要素与PM2.5浓度之间的相关性,对PM2.5污染过程的大气边界层特征进行分析;同时采用HYSPLIT后向轨迹模拟及区域风场相关矢分析对影响福州雾霾的污染物区域传输路径进行探讨.结果表明:地面气温与PM2.5浓度呈正相关,地面风速与PM2.5浓度呈负相关,近地面边界层条件有利于霾颗粒物的形成和累积.但不同于我国东部主要污染源区霾污染过程中存在大气边界层逆温,福州PM2.5污染过程中并未出现大气边界层逆温结构,这一边界层结构的垂直混合可有利于区域传输的污染物从上层大气到达近地面从而加重福州霾污染,福州是华东地区一个PM2.5污染物的主要接受区,PM2.5污染物主要以外源输送为主.2013年1月份福州市清洁日近地面风向为海洋吹向大陆的东南风,霾污染日则为大陆吹向海洋的偏北风,PM2.5污染物主要从长三角地区、苏北以及安徽河南一带通过东北和西北方向的传输路径影响福州的空气质量.  相似文献   
4.
利用探空资料、NECP再分析资料、AERONET气溶胶反演资料等分析了北京地区一次典型灰霾天气过程的成因及气溶胶光学特性参数变化情况.结果表明:此次灰霾期间,稳定的环流形势、湿润的环境及逆温结构的存在是灰霾得以持续和发展的重要原因.灰霾期间AOD、PM2.5浓度逐渐增大,能见度逐渐降低,这可能与局地气溶胶的累积和相对湿度的增大有关,使气溶胶粒子的消光性增强.气溶胶的体积谱表现为双峰型结构,细粒子体积浓度峰值远大于粗粒子浓度峰值,且细粒子浓度峰值逐日增大,Angstrom波长指数在1.2~1.4之间,两参数均可表明此次灰霾过程的污染粒子以气溶胶细粒子为主;灰霾期间SSA逐日增大,表明气溶胶粒子的散射性逐渐增强,SSA随波长的变化主要呈现两种变化趋势,这与当日主控粒子的尺度有关.因气溶胶的作用,使到达地面的辐射通量减小.这些光学特性参量的变化为了解北京地区灰霾期间气溶胶特性及其气候效应提供了参考.  相似文献   
5.
不同季节气象条件对北京城区高黑碳浓度变化的影响   总被引:2,自引:0,他引:2  
利用2013年至2015年北京城区黑碳气溶胶(下文统称为"BC")和PM2.5观测资料,结合地面气象观测资料、ECMWF边界层高度再分析资料和FNL/NCEP不同高度风速再分析资料,讨论了BC质量浓度及其在PM_(2.5)质量浓度中所占比例(下文统称"黑碳占比")的季节、月、日变化特征,并通过计算北京城区BC浓度与不同高度风速的相关矢量,分析了气象条件和外来输送对北京城区BC浓度变化的影响.结果发现:研究时段内北京城区BC浓度平均值为(4.77±4.49)μg·m~(-3);黑碳占比为8.23%±5.47%.BC浓度和黑碳占比在春、夏季低,秋、冬季高,其日变化特征在4个季节均为"白天低夜间高"的单峰型特征.随着PM_(2.5)浓度的升高,BC浓度增大,黑碳占比减小.当北京地区风向为东北、东北偏东、东南和西南偏西(主风向)时,BC浓度与风速和边界层高度均呈反向变化,即随风速和边界层高度的增大而减小.另外不同季节BC浓度随风速变化的临界值及其变化速率不同.冬季高BC浓度时段,北京城区BC浓度在低层大气的关键影响区分别位于河北南部与山东交界地区以及河北西北部与山西内蒙交界地区;高空关键影响区主要位于北京以西的河北西部、山西北部和内蒙古地区.  相似文献   
6.
针对目前空气质量统计预报方法存在的主要缺陷,本文提出了距离相关系数和支持向量机回归相结合的统计预报方案DC-SVR.利用淮安市2013年1—12月PM_(2.5)观测资料和常规气象观测资料,首先在选入预报当日气象要素的基础上,增加选取前期污染物和气象要素作为预报因子,再采用距离相关系数分季节从预报因子中筛选出重要预报因子,最后采用支持向量机回归对PM_(2.5)浓度值进行逐日滚动统计预报.研究发现,淮安地区气温和气压对PM_(2.5)的距离相关性要高于其他气象要素,夏秋季PM_(2.5)与气象要素的距离相关性较春冬季好.基于距离相关系数和支持向量机回归建立DC-SVR模型,PM_(2.5)的试预报值和实测值的全年相关系数高达0.76,平均偏差仅为1.13μg·m~(-3),平均绝对误差为23.47μg·m~(-3).通过与支持向量机回归、人工神经网络的统计预报效果对比,DC-SVR模型有效降低预报因子维数且能自适应选取最佳参数,预报精度显著优于其他3种统计预报方案,可为业务化预报提供参考.  相似文献   
7.
近53年山东省霾季节性特征的年代际变异   总被引:1,自引:0,他引:1  
为了进一步认识山东省霾日长期变化特征,从而为政府决策和空气质量预报提供科学依据,基于山东省80 个气象站53 年(1961-2013)的观测资料分析,利用多项式及线性回归拟合、定义表示随季节和年际变化程度的变量如季节变化率、年际变化率等多种统计方法分析了近53 年来山东省霾日季节性的年际、年代际长期变化及空间分布规律,结果表明,山东上个世纪明显的冬季霾高发的典型季节性特征演变为本世纪模糊的季节差异,即霾多发时段随年际增长逐渐由冬季蔓延至秋季,夏季和春季.全省平均霾日的季节变率从60 年代的84.0%,70-80 年代的72.4%~73.6%,到90 年代跌至56.4%,而在本世纪的13 年低达42.3%,体现了山东霾日变化季节性的年代际特征,即近53 年季节差异在不断减小,霾趋于常年化发生的大气污染事件.霾日季节性的空间分布及年际变化特征还表明:近53 年山东霾日呈持续上升趋势,1990 年之前呈显著的增长趋势,1990 年之后上升缓慢,但维持霾高发的水平.霾日高发区域主要集中在济南地区,济宁-泰安-莱芜一带,枣庄-临沂一带,青岛地区和聊城西部地区,其中,高中心依次为济南的80.9 d·a^-1,临沂的78.2 d·a^-1 和青岛的69.0 d·a^-1.山东中东部的霾日年增长率整体高于西部地区,鲁中、鲁南及半岛南部地区是霾日年际增长高值区.山东省霾日年际变化趋势以夏季增长率最高,大部分地区的年际增长率都在4.5%·a^-1 以上,其次是秋季、春季霾日年际变化趋势,冬季霾日年际变化趋势普遍增长率最低,且大部分地区的变化率值为1.5%·a^-1 以上,近53 年来山东大部分地区出现了霾日模糊季节性变异.  相似文献   
8.
利用保定市2015—2019年近地面O3和气象观测数据,统计分析了该地区O3变化特征及其与地面气温、相对湿度、风速和风向的关系,并确定了O3的周边源区.结果表明,2015—2019年保定市O3污染呈加重趋势,O3污染超标天数从2015年的63 d增加至2019年的95 d.由于秋冬季昼夜温差较大,导致其O3日变化相对扰动高于春夏季节.O3浓度与近地面气温呈非线性正相关关系,随相对湿度(RH)的增加呈阶段性的先增后减的变化趋势,其中当RH为40%~50%时,O3浓度及其污染超标率均达到最大.此外,风场对O3分布有重要影响,盛行偏南风时易发生O3重污染,表明影响该地区O3污染源区主要位于保定南部.潜在源贡献因子分析方法(PSCF)和浓度权重轨迹分析法(CWT)的分析结果表明,保定市春夏O3源区分布范围最大,其中贡献高值区主要分布在保定以南的河南东部、山东西部,周边源区对保定市O3污染具有重要影响作用.  相似文献   
9.
细颗粒物(PM2.5)累积主导着长三角地区冬季空气污染,其中,气象要素具有重要的作用.本文结合WRF-Chem模式和WRF-FDDA技术,针对2019年1月12—16日发生在长三角地区的一次典型PM2.5污染过程进行数值模拟分析.通过敏感性试验,量化分析地面气象因素(温度、风速、相对湿度)对该地区PM2.5浓度的影响,并利用对自动气象站观测资料的四维资料同化试验,探究气象场改进对PM2.5模拟的改善.模拟结果表明,长三角地区PM2.5污染受气象条件影响程度较为显著,PM2.5浓度与风速和温度呈显著负相关,与相对湿度呈正相关.水平风速减少40%、温度增加3℃、相对湿度增加20%分别造成了+4.68%、-2.82%与+2.2%的PM2.5浓度变化.而同化气象资料显著地改善了模拟的气象场精度,其均方根误差(RMSE)统计项中相对湿度减小9.68%,温度减小1.02℃,风速减小0.35 m·s-1,这也使得PM...  相似文献   
10.
为研究京津冀地区NO2时空变化与气象条件影响,本文利用变分方法订正TROPOMI卫星NO2遥感数据,结合环境气象评估指数(EMI)分析气象条件对NO2浓度变化的影响.结果表明,经过变分方法订正过的NO2浓度具有更可靠和高分辨率的时空分布特征.京津冀西北部地区的NO2浓度低,东部和南部浓度较高.北部燕山、西部太行山形成的半包围地形阻挡了大气污染物在京津冀平原地区的扩散,产生了不利的气象条件.其中,燕山南部的北京、天津和唐山以及太行山东部的保定、石家庄、邢台、邯郸等地气象条件较差,而高海拔地区的张家口、承德、秦皇岛大气扩散条件较好.NO2浓度在春、夏季受到气象条件变化的显著影响,而在秋、冬季受到气象条件变化的影响较小.气象条件对NO2不同浓度区间的作用不同,NO2浓度较低和较高时气象条件对其作用更为显著,而浓度处于转折区间时,气象条件对其影响较小.本研究开展的TROPOMI卫星变分订正、NO2浓...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号