首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   6篇
综合类   6篇
  2019年   2篇
  2018年   4篇
排序方式: 共有6条查询结果,搜索用时 78 毫秒
1
1.
采用厌氧氨氧化反应器(ASBR)处理模拟生活污水,考察低基质比、降温方式及pH对系统脱氮性能的影响.结果表明,温度为30℃时,控制进水NO_2~--N浓度为(30±0.2)mg·L~(-1),基质比(NO_2~--N/NH_4~+-N)由0.9升至1.4,系统NH_4~+-N和NO_2~--N去除率均值分别从54.4%和65.3%升至95.8%和92.5%;当基质比继续升高至1.6时,NH_4~+-N去除率基本不变,而NO_2~--N去除率降至54.6%,即基质比接近理论值1.32时,其厌氧氨氧化脱氮性能较强.当反应温度一次性从30℃降低至15℃时,NH_4~+-N和NO_2~--N的去除率由97.5%和98.5%分别降至35.2%和40.1%,当采用阶梯式降温方式(30℃→25℃→20℃→15℃)时,NH_4~+-N和NO_2~--N的去除率分别由97.7%和98.6%逐渐降至52.7%和62.4%.控制NO_2~--N/NH_4~+-N为1.4,逐步升高pH由7.7至8.5时,NH_4~+-N和NO_2~--N的去除率先增大后减小,当pH为8.3时系统脱氮性能最佳.  相似文献   
2.
采用改良A2/O-BAF双污泥系统处理低C/N比生活污水,为提高碳源利用率,研究了两段进水(预缺氧段和缺氧段)对反硝化除磷脱氮的影响,同时根据COD的物料衡算公式,分析评价了不同进水比下,碳源的利用情况.结果表明当分段进水比为7:3时,平均进水COD、NH4+-N、TN、TP浓度分别为174.99、58.19、59.10、5.15 mg·L-1,出水COD、NH4+-N、TN、TP浓度分别为29.48、4.07、14.10、0.44 mg·L-1,去除率分别为82.12%、92.76%、75.45%、91.20%;系统中反硝化聚磷菌占聚磷菌的比例(DPAOs/PAOs)为98.81%,此时系统反硝化除磷脱氮最佳,同时碳源的有效利用率达85.77%,平衡百分比为92.33%.通过优化分段进水,碳源被有效利用,提高了同步脱氮除磷效率,为改良A2/O-BAF双污泥系统处理低C/N比污水提供理论依据.  相似文献   
3.
在11~14℃低温下,采用A~2/O-BAF系统处理低C/N生活污水,研究了污染物去除特性、反硝化除磷过程中除磷脱氮比例(ΔPO_4~(3-)/ΔNO_3~--N)以及BAF中曝气量和有效填料高度对硝化反应的影响.结果表明,在COD、NH_4~+-N、TN和PO_4~(3-)的平均进水浓度分别为193.1、58.6、60.3和5.1 mg·L~(-1)时,平均出水浓度分别为46.3、2.5、13.4和0.3 mg·L~(-1),达到国家城镇污水处理厂污染物排放标准一级A标准.对ΔPO_4~(3-)/ΔNO_3~--N进行线性拟合,比值分布在0.47~1.75之间;运用正态分布对ΔPO_4~(3-)/ΔNO_3~--N进行数理统计,其均值为1.20,标准差0.29.BAF中曝气量为60 L·h~(-1)和100 L·h~(-1),出水NH_4~+-N浓度小于5.0 mg·L~(-1)时所需填料高度分别为1.8 m和1.0 m;继续增大BAF中曝气量为120 L·h~(-1)时,气水流冲击导致生物膜脱落,造成出水NH_4~+-N大于5.0 mg·L~(-1).  相似文献   
4.
不同COD浓度下低基质厌氧氨氧化的启动特征   总被引:1,自引:0,他引:1  
采用厌氧序批式反应器(ASBR)处理NH4+-N和NO2--N浓度分别为(25. 00±0. 40) mg·L~(-1)和(33. 00±0. 60) mg·L~(-1)的模拟废水,在温度为30℃时,投加乙酸钠控制COD浓度分别为5. 00、15. 00、30. 00和50. 00 mg·L~(-1),研究对厌氧氨氧化启动的影响.结果表明:①4种COD浓度下分别经过74、94、106和129 d均能成功启动厌氧氨氧化. COD浓度为15. 00 mg·L~(-1)和30. 00 mg·L~(-1)时,反应器脱氮性能较好,稳定运行后,平均出水NH4+-N浓度分别为1. 98 mg·L~(-1)和1. 89 mg·L~(-1),平均出水NO2--N浓度低于0. 62 mg·L~(-1),平均出水TN浓度分别为2. 37、2. 28 mg·L~(-1);②启动过程中反硝化对脱氮的平均贡献率逐渐降低至4. 78%、9. 59%、10. 21%和36. 50%,厌氧氨氧化对脱氮的平均贡献率逐渐上升至95. 22%、90. 41%、89. 79%和63. 50%;③厌氧氨氧化活性分别在第44、76、86和114 d时超过反硝化活性,最后分别达到0. 700、0. 690、0. 670和0. 510mg·(g·h)~(-1),反硝化活性分别为0. 110、0. 130、0. 240和0. 410 mg·(g·h)~(-1).该研究结果可为厌氧氨氧化技术在实际工程中的应用提供参考.  相似文献   
5.
间歇曝气连续流反应器同步硝化反硝化除磷   总被引:4,自引:4,他引:0  
采用连续流反应器处理生活污水,保持厌氧段格室为3格,将缺氧段格室从2格减少至0格,好氧段格室由5格逐渐增加至7格,Run1时对好氧段格室采用连续曝气,Run2~Run4时采用间歇曝气.曝/停比分别为:40 min/20 min、40 min/30min、40 min/40 min,硝化液回流比从150%逐渐减少至0%. Run4时,平均进水COD、NH+4-N、TN、PO_4~(3-)-P浓度分别为259. 34、60. 26、64. 42、6. 10 mg·L-1,出水COD、NH+4-N、TN、PO_4~(3-)-P分别为26. 40、1. 03、5. 84、0. 30 mg·L-1.反应器对氮素的去除量从Run1时的192. 30 mg·h-1逐渐增加至Run4时的244. 00 mg·h-1,相应地去除率从65. 40%逐渐增大至95. 30%;从Run1~Run4,反硝化聚磷菌和聚磷菌的活性分别从36. 05%和38. 20%增大至140. 50%和133. 40%;通过间歇曝气在连续流反应器中实现了同步硝化反硝化除磷脱氮,为污水处理厂提标改造提供参考.  相似文献   
6.
HRT对厌氧氨氧化协同异养反硝化脱氮的影响   总被引:2,自引:2,他引:0  
采用SBR处理实际生活污水,在实现半亚硝化时,出水NH_4~+-N、NO-2-N及COD平均浓度分别为37.27、39.97和120mg·L~(-1),将其作为厌氧氨氧化反应器(ASBR)的进水.控制温度为24℃,pH为7.2±0.2,考察HRT分别为36、33、30和27h时对厌氧氨氧化协同异养反硝化脱氮的影响.结果表明:(1)HRT为33 h时系统脱氮效能最佳,总氮容积负荷(TNLR)和总氮去除负荷(TNRR)平均值分别为0.056 kg·(m3·d)~(-1)和0.050 kg·(m3·d)~(-1);NH_4~+-N、NO-2-N和COD平均出水浓度分别为1.36、0.47和49.79 mg·L~(-1),三者去除率分别为96.30%、98.83%和56.17%;ΔNO-2-N/ΔNH_4~+-N和ΔNO_3~--N/ΔNH_4~+-N分别为1.17和0.15,比厌氧氨氧化反应的理论值(1.32,0.26)小0.15和0.11,造成此偏差的原因是由于系统中存在异养反硝化.(2)随着HRT的逐渐减小,厌氧氨氧化对脱氮的贡献率逐渐减小,异养反硝化对脱氮的贡献率逐渐增加.本研究结果可为厌氧氨氧化技术在实际工程中的应用提供参考.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号