首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
  国内免费   2篇
综合类   5篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
以人工模拟废水为研究对象,采用3组SBR反应器(R_(15℃)、R_(25℃)、R_(35℃)),考察了温度对生物脱氮效能的影响。结果表明:15,25,35℃条件下,NH+4-N平均去除率分别为96.9%,98.3%和96.6%,均获得了较理想的氨氮去除效果;15~35℃温度范围内,温度每升高10℃,系统硝化速率提高1.35~1.84倍,反硝化速率提高2.30~2.34倍,且硝化和反硝化过程的温度系数(θ)分别为1.04和1.08,说明升高温度对反硝化反应的影响要大于硝化反应;硝化反应和反硝化反应的活化能(E_a)分别为33.4,61.9 k J/mol;Ni AR(亚硝态氮积累率)随着温度升高而增大(2.0%→23.1%→97.6%),高温条件有利于建立亚硝酸型生物脱氮机制。  相似文献   
2.
本实验以人工模拟废水为研究对象,采用3组SBR反应器(R_(15℃)、R_(25℃)、R_(35℃)),重点考察了温度对生物脱氮效能、胞外聚合物(EPS)含量及其组分[蛋白质(PN)、多糖(PS)和核酸(DNA)]的影响.结果表明,高温条件有利于促进亚硝酸型生物脱氮体系的建立,显著提高氨氮去除性能.温度对EPS及其组分具有显著影响.随着温度的升高,EPS和TB-EPS含量逐渐降低,而LB-EPS含量逐渐升高,EPS以TB-EPS为主(占69.0%~79.5%),但TB-EPS/LB-EPS比值随着温度升高逐渐降低[3.8(15℃)→3.6(25℃)→2.2(35℃)].在EPS,LB-EPS和TB-EPS中PN和DNA含量随着温度升高而降低,LB-EPS和EPS中PS含量随温度升高而增加.而TB-EPS中PS含量随温度升高而降低,且25℃是各组分浓度变化重要折点.在15℃和25℃时,PN为TB-EPS和LB-EPS的主要成分,PS次之,DNA最少,35℃时,PS成为主要成分,PN次之,DNA最少.此外,本研究也发现,在15℃和25℃时,EPS含量在硝化过程中逐渐增大,反硝化过程中逐渐降低.  相似文献   
3.
以实际生活废水为处理对象,考察了SBR工艺好氧/缺氧(O/A)和缺氧/好氧(A/O)运行模式对生物脱氮性能、胞外聚合物(extracellular polymeric substance,EPS)及其组分(蛋白质PN、多糖PS和核酸DNA)的影响.结果表明,O/A和A/O运行模式下,SBR工艺均获得了高效稳定的NH_4~+-N去除,去除率分别为97.5%和98.0%,且硝化速率与NH_4~+-N负荷呈现较好正相关性.交替缺氧/好氧运行模式对于EPS影响,A/O模式下EPS产量略高于O/A模式下,且运行模式对TB-EPS及其组分(PN、PS和DNA)产量无显著影响,但A/O模式下LB-EPS及其组分(PN和PS)产量均高于O/A模式下,倍数介于1.38~1.56之间.2种模式条件下,PS是TB-EPS和EPS的主要组分,而PN是LB-EPS的主要成分.EPS含量与污泥沉降性能具有良好的线性正相关.  相似文献   
4.
以人工模拟废水为研究对象,采用4组SBR反应器(R0,R5,R10和R15),重点考察了碳氮比(C/N)对胞外聚合物(EPS)含量及其组分(蛋白质(PN)、多糖(PS)和核酸(DNA))的影响.试验结果表明:C/N对EPS及其组分具有显著影响.随着C/N由0升高至15,EPS和紧密结合型胞外聚合物(TB-EPS)含量逐渐升高,而松散型胞外聚合物(LB-EPS)含量逐渐降低,EPS以TB-EPS为主(占77.4%~93.6%).EPS和TB-EPS中的PN、PS和DNA含量随着C/N值升高而升高,LB-EPS中的PN、PS和DNA含量随C/N升高而降低.此外,随着C/N的增大,毛细吸水时间(CST)和污泥比阻(SRF)值显著增大,污泥的脱水性能变差.  相似文献   
5.
为探究游离氨(FA)对硝化过程影响的机理,试验以人工模拟废水为研究对象,基于16S rRNA基因-Illumina MiSeq高通量测序技术,采用4组平行的SBR反应器(进水FA浓度分别控制为0.5,5,10,15 mg/L,分别记为R0.5、R5、R10和R15),探究了微生物在不同FA浓度条件下的群落组成和结构特征。结果表明:FA会显著影响系统内微生物菌群结构和功能。R0.5的α多样性指数(包括Chao1、ACE、Shannon和Simpson指数)在4组反应器中均为最大,说明R0.5的物种多样性最高,而R15的物种多样性最低。此外,在微生物门水平上,变形菌门Proteobacteria(45.9%~70.5%)和拟杆菌门Bacteroidetes(11.8%~41.3%)最具优势,且变形菌门(Proteobacteria)的相对丰度随着FA浓度升高而升高。在微生物属水平上,动胶菌属Zoogloea和陶厄氏菌属Thauera最具优势,且亚硝化单胞菌属(Nitrosomonas)和硝化螺旋菌属(Nitrospira)在R10中丰度明显高于其他3个系统。基于LEfSe分析,共获得了25个具有显著差异的微生物标记物,从而得到了各FA浓度条件下在微生物学分类水平上的菌群关键生物标记物。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号