首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  国内免费   1篇
  完全免费   2篇
  综合类   3篇
  2019年   2篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 23 毫秒
1
1.
Coagulation is the best available method for removing intracellular organic matter(IOM),which is released from algae cells and is an important precursor to disinfection by-products in drinking water treatment. To gain insight into the best strategy to optimize IOM removal, the coagulation performance of two Al salts, i.e., aluminum chloride(AlCl_3) and polyaluminum chloride(PACl, containing 81.2% Al_(13)), was investigated to illuminate the effect of Al species distribution on IOM removal. PACl showed better removal efficiency than AlCl_3 with regard to the removal of turbidity and dissolved organic carbon(DOC), owing to the higher charge neutralization effect and greater stability of pre-formed Al_(13) species. High pressure size exclusion chromatography analysis indicated that the superiority of PACl in DOC removal could be ascribed to the higher binding affinity between Al_(13) polymer and the low and medium molecular weight(MW) fractions of IOM. The results of differential log-transformed absorbance at 254 and 350 nm indicated more significant formation of complexes between AlCl_3 and IOM, which benefits the removal of tryptophan-like proteins thereafter. Additionally,PACl showed more significant superiority compared to AlCl_3 in the removal of 5 kD a and hydrophilic fractions, which are widely viewed as the most difficult to remove by coagulation.This study provides insight into the interactions between Al species and IOM, and advances the optimization of coagulation for the removal of IOM in eutrophic water.  相似文献
2.
Coupling coagulation and applied electric field is an efficient method to regulate cake layer porosity and hydrophilicity for alleviating ultrafiltration membrane (UF) fouling. However, the Al/Fe flocs aggregation behavior are induced from electric field and determine the cake layer structure, which has not been studied comparatively yet. Herein, the anti-fouling performance in an efficient electro-coagulation membrane reactor (ECMR, in which UF membrane modules are placed between electrodes) was investigated with Al/Fe anode and various electrochemical parameters from the viewpoint of regulating flocs aggregation. Both the cake layers formed from Al and Fe flocs under an electric field were more porous and hydrophilic in comparison with that formed without electric fields, resulting in an enhanced water flux under higher electric field strength. Comparing with Fe flocs, Al flocs had a faster growth rate and larger size, facilitating membrane pore block resistant, which was more pronounced in a higher current density. Furthermore, the cake layer formed from Al flocs was more porous than that formed from Fe flocs. Therefore, the anti-fouling performance of ECMR with Al anode was superior to that of ECMR with Fe anode. When the electric field strength increased from 0 to 10?V/cm, the normalized specific flux was improved from 71.2% to 89.4% for ECMR (Al) and from 48.1% to 70.1% for ECMR (Fe) at 30?min.  相似文献
3.
A polyaluminum containing a high concentration of Al13 polymer and active chlorine (PACC) was successfully synthesized by a new electrochemical reactor using Ti/RuO2-TiO2 anodes. PACC can potentially be used as a dual-function chemical reagent for water treatment. The obtained results indicated that the formation of Al13 polymer and active chlorine, were the most active components in PACC responsible for coagulation and disinfection respectively. These components were significantly influenced by electrolyte temperature, current density, and stirring rate. It was observed that high electrolyte temperature favored the formation of Al13. Increasing current density and stirring rate resulted in high current efficiency of chlorine evolution, thus favoring the generation of Al13 and active chlorine in PACC. When the PACC (AlT = 0.5 mol/L, basicity = 2.3) was prepared at the optimum conditions by electrolysis process, the Al13 polymer and active chlorine in product reached above 70% of AlT and 4000 mg/L, respectively. In the pilot scale experiment with raw polyaluminum chloride used as an electrolyte, PACC was successfully prepared and produced a high content of Al13 and active chlorine products. The pilot scale experiment demonstrated a potential industrial approach of PACC preparation.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号