首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  国内免费   2篇
  完全免费   19篇
  综合类   21篇
  2019年   1篇
  2018年   5篇
  2017年   2篇
  2016年   3篇
  2014年   6篇
  2012年   4篇
排序方式: 共有21条查询结果,搜索用时 38 毫秒
1.
Size distributions of 29 elements in aerosols collected at urban, rural and curbside sites in Beijing were studied. High levels of Mn, Ni, As, Cd and Pb indicate the pollution of toxic heavy metals cannot be neglected in Beijing. Principal component analysis (PCA) indicates 4 sources of combustion emission, crust related sources, traffic related sources and volatile species from coal combustion. The elements can be roughly divided into 3 groups by size distribution and enrichment factors method (EFs). Group 1 elements are crust related and mainly found within coarse mode including Al, Mg, Ca, Sc, Ti, Fe, Sr, Zr and Ba; Group 2 elements are fossil fuel related and mostly concentrated in accumulation mode including S, As, Se, Ag, Cd, Tl and Pb; Group 3 elements are multi-source related and show multi-mode distribution including Be, Na, K, Cr, Mn, Co, Ni, Cu, Zn, Ga, Mo, Sn and Sb. The EFs of Be, S, Cr, Co, Ni, Cu, Ga, Se, Mo, Ag, Cd, Sb, Tl and Pb show higher values in winter than in summer indicating sources of coal combustion for heating in winter. The abundance of Cu and Sb in coarse mode is about 2-6 times higher at curbside site than at urban site indicating their traffic sources. Coal burning may be the major source of Pb in Beijing since the phase out of leaded gasoline, as the EFs of Pb are comparable at both urban and curbside sites, and about two times higher in winter than that in summer.  相似文献
2.
To elucidate the air pollution characteristics of northern China, airborne PM10 (atmospheric dynamic equivalent diameter ≤ 10 μm) and PM2.5 (atmospheric dynamic equivalent diameter ≤ 2.5 μm) were sampled in three different functional areas (Yuzhong County, Xigu District and Chengguan District) of Lanzhou, and their chemical composition (elements, ions, carbonaceous species) was analyzed. The results demonstrated that the highest seasonal mean concentrations of PM10 (369.48 μg/m3) and PM2.5 (295.42 μg/m3) were detected in Xigu District in the winter, the lowest concentration of PM2.5 (53.15 μg/m3) was observed in Yuzhong District in the fall and PM10 (89.60 μg/m3) in Xigu District in the fall. The overall average OC/EC (organic carbon/elemental carbon) value was close to the representative OC/EC ratio for coal consumption, implying that the pollution of Lanzhou could be attributed to the burning of coal. The content of SNA (the sum of sulfate, nitrate, ammonium, SNA) in PM2.5 in Yuzhong County was generally lower than that at other sites in all seasons. The content of SNA in PM2.5 and PM10 in Yuzhong County was generally lower than that at other sites in all seasons (0.24–0.38), indicating that the conversion ratios from precursors to secondary aerosols in the low concentration area was slower than in the area with high and intense pollutants. Six primary particulate matter sources were chosen based on positive matrix factorization (PMF) analysis, and emissions from dust, secondary aerosols, and coal burning were identified to be the primary sources responsible for the particle pollution in Lanzhou.  相似文献
3.
Size segragated samples were collected during high polluted winter haze days in 2006 in Beijing, China. Twenty nine elements and 9 water soluble ions were determined. Heavy metals of Zn, Pb, Mn, Cu, As, Cr, Ni, V and Cd were deeply studied considering their toxic effect on human being. Among these heavy metals, the levels of Mn, As and Cd exceeded the reference values of National Ambient Air Quality Standard (GB3095-2012) and guidelines of World Health Organization. By estimation, high percentage of atmospheric heavy metals in PM2.5 indicates it is an effective way to control atmospheric heavy metals by PM2.5 controlling. Pb, Cd, and Zn show mostly in accumulation mode, V, Mn and Cu exist mostly in both coarse and accumulation modes, and Ni and Cr exist in all of the three modes. Considering the health effect, the breakthrough rates of atmospheric heavy metals into pulmonary alveoli are: Pb (62.1%) 〉 As (58.1%) 〉 Cd (57.9%) 〉 Zn (57.7%) 〉 Cu (55.8%) 〉 Ni (53.5%) 〉 Cr (52.2%) 〉 Mn (49.2%) 〉 V (43.5%). Positive matrix factorization method was applied for source apportionment of studied heavy metals combined with some marker elements and ions such as K, As, SO42- etc., and four factors (dust, vehicle, aged and transportation, unknown) are identified and the size distribution contribution of them to atmospheric heavy metals are discussed.  相似文献
4.
New particle formation is a key process in shaping the size distribution of aerosols in the atmosphere.We present here the measurement results of number and size distribution of aerosol particles (10-1...  相似文献
5.
Ambient volatile organic compounds pollution in China   总被引:1,自引:0,他引:1       下载免费PDF全文
Owing to rapid economic and industrial development, China has been suffering from degraded air quality and visibility. Volatile organic compounds (VOCs) are important precursors to the formation of ground-level ozone and hence photochemical smog. Some VOCs adversely affect human health. Therefore, VOCs have recently elicited public concern and given new impetus to scientific interest. China is now implementing a series of polices to control VOCs pollution. The key to formulating policy is understanding the ambient VOCs pollution status. This paper mainly analyzes the species, levels, sources, and spatial distributions of VOCs in ambient air. The results show that the concentrations of ambient VOCs in China are much higher than those of developed countries such as the United States and Japan, especial benzene, which exceeds available standards. At the same time, the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) of various VOCs are calculated. Aromatics and alkenes have much higher OFPs, while aromatics have higher SOAFP. The OFPs of ambient VOCs in the cities of Beijing, Guangzhou and Changchun are very high, and the SOAFP of ambient VOCs in the cities of Hangzhou, Guangzhou and Changchun are higher.  相似文献
6.
O3and PM2.5were introduced into the newly revised air quality standard system in February 2012, representing a milestone in the history of air pollution control, and China's urban air quality will be evaluated using six factors(SO2, NO2, O3, CO, PM2.5and PM10) from the beginning of 2013. To achieve the new air quality standard, it is extremely important to have a primary understanding of the current pollution status in various cities. The spatial and temporal variations of the air pollutants were investigated in 26 pilot cities in China from August 2011 to February 2012, just before the new standard was executed. Hourly averaged SO2, NO2and PM10were observed in 26 cities, and the pollutants O3, CO and PM2.5were measured in 15 of the 26 cities. The concentrations of SO2and CO were much higher in the cities in north China than those in the south. As for O3and NO2, however, there was no significant diference between northern and southern cities. Fine particles were found to account for a large proportion of airborne particles, with the ratio of PM2.5to PM10ranging from 55% to 77%. The concentrations of PM2.5(57.5 μg/m3) and PM10(91.2 μg/m3) were much higher than the values(PM2.5: 11.2 μg/m3; PM10 : 35.6 μg/m3) recommended by the World Health Organization. The attainment of the new urban air quality standard in the investigated cities is decreased by 20% in comparison with the older standard without considering O3, CO and PM2.5, suggesting a great challenge in urban air quality improvement, and more eforts will to be taken to control air pollution in China.  相似文献
7.
To understand the pollution characteristics of atmospheric particles and heavy metals in winter in Chang-Zhu-Tan city clusters, China, total suspended particulate(TSP) and PM10samples were collected in cities of Changsha, Zhuzhou and Xiangtan from December 2011 to January 2012, and heavy metals of Cd, Pb, Cr, and As were analyzed. It shows that the average TSP concentration in Changsha, Zhuzhou and Xiangtan were(183 ± 73),(201 ± 84) and(190 ± 66) μg/m3respectively, and the average PM10 were(171 ± 82),(178 ± 65) and(179 ± 55) μg/m3respectively. The lowest TSP and PM10concentrations occurred at the background Shaping site of Changsha. The average ratio of ρ(PM10)/ρ(TSP) was 91.9%, ranging from 81.3% to 98.9%. Concerning heavy metals, in TSP samples, the concentration of Cr, As, Cd and Pb were 28.8–56.5, 18.1–76.3, 3.9–26.1 and 148.0–460.9 ng/m3, respectively, while in PM10samples, were 16.4–42.1, 15.5–67.9, 3.3–22.2 and 127.9–389.3 ng/m3, respectively. The enrichment factor of Cd was the highest, followed by Pb and As, while that of Cr was the lowest.  相似文献
8.
正Anthropogenic emissions impact significantly the atmospheric environment which human being relies on,e.g.,global warming,stratospheric ozone depletion,photochemical smog,acid rain,haze and so on.Although clean air actions have been legislated by many nations to mitigate pollutants’emission with the aim of protecting the atmospheric environment,  相似文献
9.
Air concentrations of volatile organic compounds (VOCs) were continually measured at a monitoring site in Shenyang from 20 August to 16 September 2017. The average concentrations of alkanes, alkenes, aromatics and carbonyls were 28.54, 6.30, 5.59 and 9.78 ppbv, respectively. Seven sources were identified by the Positive Matrix Factorization model based on the measurement data of VOCs and CO. Vehicle exhaust contributed the most (36.15%) to the total propene-equivalent concentration of the measured VOCs, followed by combustion emission (16.92%), vegetation emission and secondary formation (14.33%), solvent usage (10.59%), petrochemical industry emission (9.89%), petrol evaporation (6.28%), and liquefied petroleum gas (LPG) usage (5.84%). Vehicle exhaust, solvent usage and combustion emission were found to be the top three VOC sources for O3 formation potential, accounting for 34.52%, 16.55% and 11.94%, respectively. The diurnal variation of the total VOCs from each source could be well explained by their emission characteristics, e.g., the two peaks of VOC concentrations from LPG usage were in line with the cooking times for breakfast and lunch. Wind rose plots of the VOCs from each source could reveal the possible distribution of the sources around the monitoring site. The O3 pollution episodes during the measurement period were found to be coincident with the elevation of VOCs, which was mainly due to the air parcel from the southeast direction where petrochemical industry emission was found to be dominant, suggesting that the petrochemical industry emission from the southeast was probably a significant cause of O3 pollution in Shenyang.  相似文献
10.
Gaseous peroxides play important roles in atmospheric chemistry. To understand the pathways of the formation and removal of peroxides, atmospheric peroxide concentrations and their controlling factors were measured from 7:00 to 20:00 in September, October, and November 2013 at a heavily trafficked residential site in Beijing, China, with average concentrations of hydrogen peroxide (H2O2) and methyl hydroperoxide (MHP) at 0.55 ppb and 0.063 ppb, respectively. H2O2 concentrations were higher in the afternoon and lower in the morning and evening, while MHP concentrations did not exhibit a regular diurnal pattern. Both H2O2 and MHP concentrations increased at dusk in most cases. Both peroxides displayed monthly variations with higher concentrations in September. These results suggested that photochemical activity was the main controlling factor on variations of H2O2 concentrations during the measurement period. Increasing concentrations of volatile organic compounds emitted by motor vehicles were important contributors to H2O2 and MHP enrichment. High levels of H2O2 and MHP concentrations which occurred during the measurement period probably resulted from the transport of a polluted air mass with high water vapor content passing over the Bohai Bay, China.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号