首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  国内免费   2篇
  收费全文   1篇
  完全免费   15篇
  综合类   18篇
  2018年   3篇
  2016年   2篇
  2014年   2篇
  2013年   6篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
Three full-scale wastewater treatment processes, Orbal oxidation ditch, anoxic/anaerobic/aerobic (reversed A^2O) and anaerobic/anoxic/aerobic (A^2O), were selected to investigate the emission characteristics of greenhouse gases (GHG), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Results showed that although the processes were different, the units presenting high GHG emission fluxes were remarkably similar, namely the highest CO2 and N2O emission fluxes occurred in the aerobic areas, and the highest CH4 emission fluxes occurred in the grit tanks. The GHG emission amount of each unit can be calculated from its area and GHG emission flux. The calculation results revealed that the maximum emission amounts of CO2, CH4 and N2O in the three wastewater treatment processes appeared in the aerobic areas in all cases. Theoretically, CH4 should be produced in anaerobic conditions, rather than aerobic conditions. However, results in this study showed that the CH4 emission fluxes in the forepart of the aerobic area were distinctly higher than in the anaerobic area. The situation for N2O was similar to that of CH4: the N2O emission flux in the aerobic area was also higher than that in the anoxic area. Through analysis of the GHG mass balance, it was found that the flow of dissolved GHG in the wastewater treatment processes and aerators may be the main reason for this phenomenon. Based on the monitoring and calculation results, GHG emission factors for the three wastewater treatment processes were determined. The A^2O process had the highest CO2 emission factor of 319.3 g CO2/kg CODremoved, and the highest CH4 and N2O emission factors of 3.3 g CH4/kg CODremoved and 3.6 g N2O/kg TNremoved were observed in the Orbal oxidation ditch process.  相似文献
2.
This work described the development, optimization and validation of an analytical method for rapid detection of multiple-class pharmaceuticals in both municipal wastewater and sludge samples based on ultrasonic solvent extraction, solid-phase extraction, and ultra high performance liquid chromatography-tandem mass spectrometry quantification. The results indicated that the developed method could effectively extract all the target pharmaceuticals (25) in a single process and analyze them within 24 min. The recoveries of the target pharmaceuticals were in the range of 69%-131% for wastewater and 54%-130% for sludge at different spiked concentration levels. The method quantification limits in wastewater and sludge ranged from 0.02 to 0.73 ng/L and from 0.02 to 1.00μg/kg, respectively. Subsequently, this method was validated and applied for residual pharma- ceutical analysis in a wastewater treatment plant located in Beijing, China. All the target pharmaceuticals were detected in the influent samples with concentrations varying from 0.09 ng/L (tiamulin) to 15.24 μg/L (caffeine); meanwhile, up to 23 pharmaceuticals were detected in sludge samples with concentrations varying from 60 ng/kg (sulfamethizole) to 8.55 mg/kg (ofloxacin). The developed method demonstrated its selectivity, sensitivity, and reliability for detecting multiple-class pharmaceuticals in complex matrices such as municipal wastewater and sludge.  相似文献
3.
Biological risks of bioaerosols emitted from wastewater treatment processes have attracted wide attention in the recent years. However, the culture-based analysis method has been mostly adopted for detecting the bacterial community in bioaerosols, which may result in the underestimation of total microorganism concentration as not all microorganisms are cultivable. In this study, oligonucleotide fingerprinting of 16S rRNA genes was applied to reveal the composition and structure of the bacterial community in bioaerosols from an Orbal oxidation ditch in a Beijing wastewater treatment plant (WWTP). Bioaerosols were collected at different distances from the aerosol source, rotating brushes, and the sampling height was 1.5 m which is the common respiratory height of a human being. The bacterial communities of bioaerosols were diverse, and the lowest bacterial diversity was found at the sampling site just after the rotating brush rotating brush. A large proportion of bacteria in bioaerosols were affiliated with Proteobacteria and Bacteroidetes. Numerous bacteria present in the bioaerosols also emerged in water, indicating that the bacterial community in the bioaerosols was related to that of the aerosols’ sources. The forced aeration of rotating brushes brought about observably distinct bacterial communities between sampling sites situated before and after the rotating brush. Isolation sources of closest relatives in bioaerosols clone libraries were associated with the aqueous environment in the WWTP. Common potential pathogens in bioaerosols as well as those not reported in previous research were also analyzed in this study. Measures should be adopted to reduce the emission of bioaerosols and prevent their exposure to workers.  相似文献
4.
For wastewater treatment in rural areas, a novel three-stage step-feed wastewater treatment system, combined with a drop-aeration biofilm process, was tested in the laboratory to investigate its performance in removing suspended solids (SS), chemical oxygen demand (COD), NH4+-N, total nitrogen (TN), and total phosphorus (TP). The removal rates of SS, COD and NH4+-N were 90%, 80%, and 90% in efluent concentrations less than 10 mg/L, 50 mg/L and 8 mg/L, respectively. The TP removal rate was less satisfactory....  相似文献
5.
孔石莼(Ulva pertusa)对铅、铜、镉的吸收   总被引:1,自引:0,他引:1  
研究了大型藻孔石莼对铅、铜和镉的吸收动力学和热力学过程。结果表明,暴露于不同浓度的重金属体系中的孔石莼对铅、铜和镉的积累量随着水相中的游离态浓度的增加而增加,可以用Langmuir吸附等温式从热力学平衡角度加以描述,铅和镉饱和结合量分别为:0.715mg/g干重,Cd^2+为0.037mg/g干重;在孔石莼对铜(0.056mg/L)吸收动力学浓度的实验中,第4天达到了吸收平衡,蓄积量为对照组的9.01倍;在镉暴露浓度为0.028mg/L的实验中,第5天达吸收平衡,蓄积量为对照组的5.06倍。  相似文献
6.
This article reports an innovative integrated system utilizing solar energy as power for decentralized wastewater treatment, which consists of an oxidation ditch with double channels and a photovoltaic (PV) system without a storage battery. Because the system operates without a storage battery, which can reduce the cost of the PV system, the solar radiation intensity affects the amount of power output from the PV system. To ensure that the power output is sufficient in all different weather conditions, the solar radiation intensity of 78 W/m 2 with 95% confidence interval was defined as a threshold of power output for the PV system according to the monitoring results in this study, and a step power output mode was used to utilize the solar energy as well as possible. The oxidation ditch driven by the PV system without storage battery ran during the day and stopped at night. Therefore, anaerobic, anoxic and aerobic conditions could periodically appear in the oxidation ditch, which was favorable to nitrogen and phosphate removal from the wastewater. The experimental results showed that the system was efficient, achieving average removal efficiencies of 88% COD, 98% NH 4 + -N, 70% TN and 83% TP, under the loading rates of 140 mg COD/(g MLSS·day), 32 mg NH 4 + -N/(g MLSS·day), 44 mg TN/(g MLSS·day) and 5 mg TP/(g MLSS·day).  相似文献
7.
In the Orbal oxidation ditch,denitrification is primarily accomplished in the outer channel.However,the detailed characteristics of the flow field and dissolved oxygen(DO)distribution in the outer channel are not well understood.Therefore,in this study,the flow velocity and DO concentration in the outer channel of an Orbal oxidation ditch system in a wastewater treatment plant in Beijing(China)were monitored under actual operation conditions.The flow field and DO concentration distributions were analyzed by computed fluid dynamic modeling.In situ monitoring and modeling both showed that the flow velocity was heterogeneous in the outer channel.As a result,the DO was also heterogeneously distributed in the outer channel,with concentration gradients occurring along the flow direction as well as in the cross-section.This heterogeneous DO distribution created many anoxic and aerobic zones,which may have facilitated simultaneous nitrification-denitrification in the channel.These findings may provide supporting information for rational optimization of the performance of the Orbal oxidation ditch.  相似文献
8.
Aluminum flocculant can enhance the flocculating performance of activated sludge.However,the binding mechanism of aluminum ion(Al 3+) and extracellular polymeric substances(EPS) in activated sludge is unclear due to the complexity of EPS.In this work,threedimensional excitation emission matrix fluorescence spectroscopy(3DEEM),fluorescence quenching titration and Fourier transform infrared spectroscopy(FT-IR) were used to explore the binding behavior and mechanism between Al 3+ and EPS.The results showed that two fluorescence peaks of tyrosineand tryptophan-like substances were identified in the loosely bound-extracellular polymeric substances(LB-EPS),and three peaks of tyrosine-,tryptophanand humic-like substances were identified in the tightly boundextracellular polymeric substances(TB-EPS).It was found that these fluorescence peaks could be quenched with Al 3+ at the dosage of 3.0 mg/L,which demonstrated that strong interactions took place between the EPS and Al 3+.The conditional stability constants for Al 3+ and EPS were determined by the Stern-Volmer equation.As to the binding mechanism,the-OH,N-H,C=O,C-N groups and the sulfurand phosphorus-containing groups showed complexation action,although the groups in the LB-EPS and TB-EPS showed different behavior.The TB-EPS have stronger binding ability to Al 3+ than the LB-EPS,and TB-EPS play an important role in the interaction with Al 3+.  相似文献
9.
In order to explore the biodegradation behavior of nonylphenolic compounds during wastewater treatment processing, two full-scale wastewater treatment plants were investigated and batch biodegradation experiments were conducted. The biodegradation pathways under the various operational conditions were identified from batch experiments: shortening of ethoxy-chains dominated under the anaerobic condition, whereas oxidizing of the terminal alcoholic group prevailed over the other routes under the aerobic condition. Results showed that the anoxic condition could accelerate the biodegradation rates of nonylphenolic compounds, but had no influence on the biodegradation pathway. The biodegradation rates of nonylphenol (NP) and short-chain nonylphenol polyethoxylates (NPnEOs, n: number of ethoxy units) increased from the anaerobic condition, then the anoxic, finally to the aerobic condition, while those of long-chain NPnEOs and nonylphenoxy carboxylates (NPECs) seemed similar under the various conditions. Under every operational condition, long-chain NPnEOs showed the highest biodegradation activity, followed by NPECs and short-chain NPnEOs, whereas NP showed relatively recalcitrant characteristics especially under the anaerobic condition. In addition, introducing sulfate and nitrate to the anaerobic condition could enhance the biodegradation of NP and short-chain NPnEOs by supplying more positive redox potentials.  相似文献
10.
We investigated the correlation between performance and the bacteria community composition by H2S and toluene co-treatment. Operation of the bioreactor was divided into four stages, in which the inlet concentration of toluene and H2S were gradually increased. In Stage I, toluene was the sole target compound with an average removal e ciency of 86.49%. After adding H2S in Stage II, removal e ciency of toluene decreased immediately and recovered gradually to 85.96%. When the inlet concentration of toluene and H2S was increased in Stage III and Stage IV, respectively, the average removal e ciency for toluene increased continuously from 86.31% to 87.24%. The elimination capacities of toluene increased with increasing inlet loading rates of toluene and H2S. Results of the PCR-DGGE analysis showed a turnover growth and decline of the microbial populations in the bioreactor. In Stage I, the dominant toluene-degrading bacteria mainly contained Pseudomonas sp. strain PS+ and Hydrogenophaga sp. In Stage IV, however, the dominant toluene-degrading bacteria was aciduric bacteria (Clostridium populeti). The dominant microbial community in the bioreactor enhanced the elimination capacity of toluene, and adding H2S changed the environment of microbial growth, thus resulted in an evolution of dominant microorganisms. Analyses of microbial community and their activities provides valuable information to e ciently enhance simultaneous removal of toluene and H2S in the bioreactor.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号