首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  国内免费   1篇
  完全免费   7篇
  综合类   9篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2011年   1篇
  2010年   4篇
排序方式: 共有9条查询结果,搜索用时 32 毫秒
1
1.
Effects of suction dredging on water quality and zooplankton community structure in a shallow of eutrophic lake,were evaluated.The results showed that a decreasing trend for levels of phosphorus,organic matter,total suspended solids,Chlorophyll a and Secchi transparency in the water column was found,while levels of water depth,electrical conductivity,total dissolved solids and NO 3--N concentration increased markedly post-dredging.The effects of dredging on dissolved oxygen,pH value and temperature were alm...  相似文献
2.
Comparisons of microbial community structure, in eight filter media of zeolites, anthracite, shale, vermiculite, ceramic filter media, gravel, steel slag and bio-ceramic, were undertaken by analyzing the phospholipid fatty acid (PLFA) composition. A total of 20 fatty acids in the range of C_(11) to C_(20) were determined but only 13 PLFAs were detected in steel slag. They consist of saturated fatty acids, branched fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids. The variation of fatty acids was revealed in the relative proportions of these fatty acids in different media. The aerobic prokaryotes were the predominant group in all media. The PLFA composition showed significant differences among the eight different media by Tukey's honestly test. It was found that steel slag was significantly different in the microbial community as compared to other filter media, probably due to its alkaline effluent. Steel slag alone is probably not a good choice of substratum in constructed wetlands. The principle components analysis (PCA) showed that zeolites, bio-ceramic, shale and vermiculite had a similar microbial community structure while steel slag and ceramic filter media were distinct from other media.  相似文献
3.
The study of community composition of algae is essential for understanding the structure and dynamics of the aquatic ecosystem and for evaluating the eutrophic level of the water body. A high-performance liquid chromatographic (HPLC) method based on a reversephase C18 nonpolar column was developed for the main algal taxa, which includes cyanophytes, bacillariophytes, euglenophytes, dinophytes, and chlorophytes. Based on the elution order using HPLC, 19 pigments were identified, and they were chlorophyllide a, 19′-butanoyloxyfucoxanthin, chlorophyll c 1 + c 2, phephorbides a, peridinin, methyl-chlorophyllide a, fucoxanthin, neoxanthin, violaxanthin, myxoxanthophyll, diadinoxanthin, diatoxanthin, lutein, zeaxanthin, chlorophyll b allomer, chlorophyll b, chlorophyll a allomer, chlorophyll a, and β,β-carotene. A comparison study of cell microscopic counts and accessory pigment analysis indicated that HPLC analysis could be a useful tool for monitoring phytoplankton communities and their abundance.  相似文献
4.
High nitrate(NO_3~-)loading in water bodies is a crucial factor inducing the eutrophication of lakes.We tried to enhance NO_3~-reduction in overlying water by coupling sediment microbial fuel cells(SMFCs)with submerged aquatic plant Ceratophyllum demersum.A comparative study was conducted by setting four treatments:open-circuit SMFC(Control),closed-circuit SMFC(SMFC-c),open-circuit SMFC with C.demersum(Plant),and closed-circuit SMFC with C.demersum(P-SMFC-c).The electrochemical parameters were documented to illustrate the bio-electrochemical characteristics of SMFC-c and P-SMFC-c.Removal pathways of NO_3~- in different treatments were studied by adding quantitative~(15)NO_3~- to water column.The results showed that the cathodic reaction in SMFC-c was mainly catalyzed by aerobic organisms attached on the cathode,including algae,Pseudomonas,Bacillus,and Albidiferax.The oxygen secreted by plants significantly improved the power generation of SMFC-c.Both electrogenesis and plants enhanced the complete removal of NO_3~- from the sediment–water system.The complete removal rates of added~(15)N increased by 17.6% and 10.2% for SMFC-c and plant,respectively,when compared with control at the end of experiment.The electrochemical/heterotrophic and aerobic denitrification on cathodes mainly drove the higher reduction of NO_3~- in SMFC-c and plant,respectively.The coexistence of electrogenesis and plants further increased the complete removal of NO_3~- with a rate of 23.1%.The heterotrophic and aerobic denitrifications were simultaneously promoted with a highest abundance of Flavobacterium,Bacillus,Geobacter,Pseudomonas,Rhodobacter,and Arenimonas on the cathode.  相似文献
5.
To find suitable wetland plants for constructed wetland-microbial fuel cells(CW-MFCs),four commonly used wetland plants, including Canna indica, Cyperus alternifolius L., Acorus calamus, and Arundo donax, were investigated for their electrogenic performance and physiological changes during non-growing seasons. The maximum power output of12.82 mW/m~2 was achieved in the A. donax CW-MFC only when root exudates were being released. The results also showed that use of an additional carbon source could remarkably improve the performance of electricity generation in the C. indica and A. donax CW-MFCs at relatively low temperatures(2–15°C). However, A. calamus withered before the end of the experiment, whereas the other three plants survived the winter safely, although their relative growth rate values and the maximum quantum yield of PSII(Fv/Fm) significantly declined, and free proline and malondialdehyde significantly accumulated in their leaves.On the basis of correlation analysis, temperature had a greater effect on plant physiology than voltage. The results offer a valuable reference for plant selection for CW-MFCs.  相似文献
6.
Long-term use of chlorpyrifos poses a potential threat to the environment that cannot be ignored, yet little is known about the succession of substrate microbial communities in constructed wetlands (CWs) under chlorpyrifos stress. Six pilot-scale CW systems receiving artificial wastewater containing 1 mg/L chlorpyrifos were established to investigate the effects of chlorpyrifos and wetland vegetation on the microbial metabolism pattern of carbon sources and community structure, using BIOLOG and denaturing gradient gel electrophoresis (DGGE) approaches. Based on our samples, BIOLOG showed that Shannon diversity (H?) and richness (S) values distinctly increased after 30 days when chlorpyrifos was added. At the same time, differences between the vegetated and the non-vegetated systems disappeared. DGGE profiles indicated that H? and S had no significant differences among four different treatments. The effect of chlorpyrifos on the microbial community was mainly reflected at the physiological level. Principal component analysis (PCA) of both BIOLOG and DGGE showed that added chlorpyrifos made a difference on test results. Meanwhile, there was no difference between the vegetation and no-vegetation treatments after addition of chlorpyrifos at the physiological level. Moreover, the vegetation had no significant effect on the microbial community at the genetic level. Comparisons were made between bacteria in this experiment and other known chlorpyrifos-degrading bacteria. The potential chlorpyrifos-degrading ability of bacteria in situ may be considerable.  相似文献
7.
The strategy of choosing suitable plants should receive great performance in phytoremediation of surface water polluted by triazophos(O,O-diethyl-O-(1-phenyl-1,2,4-triazol-3-base) sulfur phosphate, TAP), which is an organophosphorus pesticide widespread applied for agriculture in China and moderately toxic to higher animal and fish. The tolerance, uptake, transformation and removal of TAP by twelve species of macrophytes were examined in a hydroponic system and a comprehensive score(CS) of five parameters(relative growth rate(RGR), biomass, root/shoot ratio, removal capacity(RC), and bio-concentration factor(BCF)) by factor analysis was employed to screen the potential macrophyte species for TAP phytoremediation. The results showed that Thalia dealbata, Cyperus alternifolius, Canna indica and Acorus calamus had higher RGR values, indicating these four species having stronger growth capacity under TAP stress. The higher RC loading in Iris pseudacorus and Cyperus rotundus were 42.11 and 24.63 μg/(g fw·day), respectively. The highest values of BCF occurred in A. calamus(1.17), and TF occurred in Eichhornia crassipes(2.14). Biomass and root/shoot ratio of plant showed significant positive correlation with first-order kinetic constant of TAP removal in the hydroponic system, indicating that plant biomass and root system play important roles in remediation of TAP. Five plant species including C. alternifolius, A. calamus, T. dealbata, C. indica and Typha orientalis, which owned higher CS, would be potential species for TAP phytoremediation of contaminated water bodies.  相似文献
8.
Comparisons of microbial community structure, in eight filter media of zeolites, anthracite, shale, vermiculite, ceramic filter media, gravel, steel slag and bio-ceramic, were undertaken by analyzing the phospholipid fatty acid (PLFA) composition. A total of 20 fatty acids in the range of C11 to C20 were determined but only 13 PLFAs were detected in steel slag. They consist of saturated fatty acids, branched fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids. The variation of fatty acids was revealed in the relative proportions of these fatty acids in di erent media. The aerobic prokaryotes were the predominant group in all media. The PLFA composition showed significant di erences among the eight di erent media by Tukey’s honestly test. It was found that steel slag was significantly di erent in the microbial community as compared to other filter media, probably due to its alkaline e uent. Steel slag alone is probably not a good choice of substratum in constructed wetlands. The principle components analysis (PCA) showed that zeolites, bio-ceramic, shale and vermiculite had a similar microbial community structure while steel slag and ceramic filter media were distinct from other media.  相似文献
9.
Phytoremediation of triazophos (O,O-diethyl-O-(1-phenyl-1,2,4-triazole-3-base) sulfur phosphate, TAP) pollution by Canna indica Linn. in a hydroponic system has been well studied, whereas the microbial mechanism on TAP degradation is still unknown. The variation in microbial community compositions was investigated by analyzing phospholipid fatty acids (PLFAs) profiles in microbes under TAP exposure. The TAP exposure resulted in an increase in proportions of fatty acid 16:0 and decrease in fatty acid 18:2!9,12c, indicating that TAP may stimulate the reproduction of microorganisms and inhibit the growth of fungi to some degree. Significant correlation was found between the ratio of fungi to bacteria and TAP removal (r2 = 0.840, p < 0.01). In addition, the microbial community in the phytoremediation system with C. indica was dominated by Gram negative bacteria, which possibly contributed to the degradation of TAP. These results indicated that TAP might induce the colonization of bacteria in the hydroponic system planted with C. indica, and lead to a discrimination of microbial community, which might be one of the mechanisms on TAP dissipation in phytoremediation system.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号