首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
综合类   3篇
  2019年   2篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
以紫色土为研究对象,采用静态箱-气相色谱法,通过田间原位试验,设置了对照(CK)、常规施肥(F)、秸秆与全量化肥配施(100FS)、秸秆分别与化肥减量30%(70FS)、40%(60FS)、50%(50FS)处理,观测了玉米秸秆与化肥配施下的菜地土壤N2O排放动态变化特征,并利用克隆技术和实时荧光定量PCR技术,结合土壤理化性质和氨氧化微生物amoA功能基因丰度,分析了秸秆与化肥配施对土壤N2O排放及相关微生物的影响,以期为调控和减缓紫色土N2O排放提供理论依据.结果表明,玉米秸秆与化肥配施处理较F处理提高了土壤N2O排放量和试验期内的累积排放量,其中100FS处理的N2O排放量最高[57.59~6 238.02μg·(m2·h)-1],累积排放量高达60.76 kg·hm-2.与F处理相比,秸秆与化肥配施处理降低了土壤铵态氮和硝态氮含量,提高了土壤有机质含量,但对土壤总氮和pH值没有显著的影响.本试验条件下,土壤AOB amoA基因拷贝数比AOA高出1~2个数量级,其中F处理的AOA amoA基因拷贝数(50.9×103copies·g~(-1))明显高于其他处理,但AOB amoA基因拷贝数最低(1.36×105copies·g~(-1)).100FS处理降低了AOA和AOB amoA基因多样性指数和均匀度,同时也显著降低了AOA amoA基因拷贝数,但秸秆与化肥减量配施可以提高AOA和AOB amoA基因多样性,同时显著增加了AOB amoA基因拷贝数.土壤AOA优势菌群OTU1可能是硝化作用的主要驱动者,直接和间接地影响N2O排放.通过冗余(RDA)分析,土壤铵态氮、有机质和有效磷含量对AOA群落结构存在显著影响(P0.05,蒙特卡罗算法);土壤可溶性有机氮、总氮、速效钾以及有效磷含量显著影响AOB群落结构(P0.05,蒙特卡罗算法),其中AOB对不同环境因子的耐受性和生态位低于AOA.总体上,玉米秸秆配施60%~70%的化肥,在保证蔬菜产量的前提下,有效提高了AOA和AOB amoA基因多样性,在一定程度上减缓了土壤N2O排放.  相似文献   
2.
缙云山4种森林植被土壤团聚体有机碳分布特征   总被引:7,自引:0,他引:7       下载免费PDF全文
王富华  吕盛  黄容  高明  王子芳  徐畅 《环境科学》2019,40(3):1504-1511
以重庆市缙云山的竹林、阔叶林、针叶林和针阔叶混交林这4种亚热带森林植被为研究对象,分析不同林分下土壤团聚体及团聚体有机碳在0~20、20~40、40~60和60~100 cm土壤剖面上的分布规律.结果表明,阔叶林土壤 2 mm粒级团聚体含量、平均重量直径(MWD)、几何平均直径(GMD)及 0. 25 mm团聚体含量(R0. 25)均随土层深度的增加而降低,而其他林分在整个土层中则无明显规律.在各土层中,竹林以 2 mm粒级团聚体为主(30. 73%~53. 08%);阔叶林和混交林的2~0. 25 mm粒级团聚体含量较高,为36. 27%~44. 67%和48. 69%~52. 44%;针叶林的优势粒径为2~0. 25 mm和0. 053 mm.总体上,在各土层中,竹林团聚体的MWD、GMD、R0. 25值均高于其他林分,且其分形维数(D)低于其他林分,可见竹林的土壤团聚体稳定性较好.随着土层深度的增加,不同林分(除针叶林外)土壤团聚体有机碳含量逐渐降低,其中竹林团聚体有机碳含量最高,显著高于针叶林和混交林.就不同团聚体粒级而言,4种林分土壤团聚体有机碳在整个土壤剖面上无明显规律,但各土层均以2~0. 25 mm和0. 053 mm粒级团聚体有机碳含量较高.不同林分下土壤团聚体有机碳相对贡献率存在显著差异,其中针叶林中0. 053 mm粒级团聚体有机碳贡献率最高;竹林的 2 mm粒级团聚体有机碳贡献率高达27. 44%~53. 47%;而阔叶林和混交林则以2~0. 25 mm粒级团聚体有机碳贡献率最高.缙云山的4种林分中,竹林的土壤团聚体稳定性较好,而针叶林的较差;在各土层中,竹林土壤各粒级团聚体有机碳含量最高,针叶林最低.  相似文献   
3.
田冬  高明  黄容  吕盛  徐畅 《环境科学》2017,38(7):2988-2999
土壤呼吸是农田生态系统碳排放的主要途径,为研究土壤呼吸、其组分和水热因子对秸秆与生物炭还田的响应,在重庆国家紫色土肥力与肥料效益长期监测基地采用根系排除法联合运用土壤呼吸自动监测系统(ACE-002/OPZ/SC)测定了无物料还田(CK)、秸秆还田(CS)、秸秆+速腐剂还田(CSD)、生物炭还田(BC)、秸秆+生物炭1∶1还田(CSBC)5种处理下的紫色土丘陵区油菜/玉米轮作制中油菜和玉米生长季的土壤呼吸及其水热因子,并计算了根系呼吸贡献.结果表明,秸秆与生物炭还田显著影响土壤呼吸季节性变化特征和峰值,除BC处理外,其他处理均促进了土壤呼吸和碳排放;油菜季土壤呼吸呈单峰曲线,在0.12~2.29μmol·(m~2·s)~(-1)波动,不同处理土壤呼吸差异显著,表现为CSCSDCSBCCKBC处理;玉米季各处理土壤呼吸变化较复杂,变化范围为1.02~15.32μmol·(m~2·s)~(-1),其中CS、CSD和CSBC呈双峰型曲线,CK和BC呈单峰曲线.土壤异养呼吸能够解释土壤总呼吸变化的86.50%~93.94%,各处理的玉米季根系呼吸贡献(26.49%~32.86%)显著低于CK处理(53.65%).土壤呼吸速率的变化主要受5cm土壤温度控制,与土壤含水量无显著关系;5cm土壤温度能够解释土壤呼吸季节变化的82%~94%.土壤呼吸的温度敏感性系数Q10值在3.28~4.47之间,与CK处理相比,CS、CSD、CSBC处理的Q10分别降低了26.62%、18.12%、20.58%;而BC处理则增大了12.53%.水热双因子对土壤呼吸不存在协同作用,仅用土壤温度单因子指数函数可较好地模拟土壤呼吸速率的动态变化.可见,秸秆、秸秆+速腐剂和秸秆+生物炭还田显著促进了土壤呼吸,生物炭还田抑制了土壤呼吸.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号