首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   13篇
  国内免费   64篇
综合类   118篇
基础理论   6篇
污染及防治   2篇
评价与监测   1篇
社会与环境   8篇
灾害及防治   13篇
  2023年   4篇
  2022年   10篇
  2021年   8篇
  2020年   10篇
  2019年   17篇
  2018年   19篇
  2017年   19篇
  2016年   10篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   11篇
  2011年   10篇
  2010年   15篇
  2009年   4篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
1.
霾天气下南京PM_(2.5)中金属元素污染特征及来源分析   总被引:16,自引:1,他引:15       下载免费PDF全文
2007年6月13日至2008年5月29日期间,对南京大气中PM2.5进行了连续采样,并利用电感耦合等离子体质谱分析法测定了PM2.5中K、Al、Ca、Pb等30种元素的质量浓度,对比分析了这些元素在霾日与非霾日的污染特征.结果表明,PM2.5污染水平较高,年质量浓度均值达103μg/m3.霾日PM2.5质量浓度水平是非霾日的2.35倍.春季霾日前后PM2.5中元素变化特征不明显,秋冬季节霾日元素浓度基本大于非霾日.平均而言,整个采样期间Cu、Se、Hg、Bi等人为污染元素的富集因子均较高,且霾日明显大于非霾日.因子分析结果表明,南京市霾日PM2.5主要来源于土壤尘、冶金化工尘、化石燃料燃烧、垃圾焚烧及建筑扬尘,贡献率依次为29.21%、20.15%、27.15%、7.09%和5.10%.  相似文献   
2.
南京大气PM_(2.5)中碳组分观测分析   总被引:17,自引:1,他引:16       下载免费PDF全文
为了解南京地区大气细颗粒物及化学成分在灰霾期间的污染水平及可能来源,于2007年6月至2008年5月,采集PM_(2.5)样品,并测定了其中有机碳(OC)和元素碳(EC)的含量.并考察了有机碳和元素碳的季节变化特征,比较分析了南京地区灰霾与非灰霾期间含碳气溶胶的污染特征.结果显示,南京大气中PM_(2.5)、OC和EC浓度变化范围分别是12.1~287.1,2.6~47.0和1.0~33.6μg/m~3,其中夏季PM_(2.5)(109.6μg/m~3)和OC(20.8μg/m~3)的值在四个季度中最高,呈现出夏季秋季冬季春季的季节变化特征;EC则具有秋季春季冬季夏季的季节变化特征.霾日的OC、EC、总碳含量(TC)浓度及OC与EC比值分别是非霾日的2.0、1.8、1.9和1.7倍.后向轨迹分析表明,在有利的天气背景下,具有丰富水汽和污染物的混合气团最易使南京产生霾天气.  相似文献   
3.
赵巧华  邱辉 《环境科学》2010,31(11):2678-2683
基于2009年4月28日、5月4日、5月5日及5月6日在太湖梅梁湾的栈桥头、直湖港的河口区、太湖中心及胥口湾中心测定的初级生产力及水下光场数据,计算了各测点的藻类光量子产额和P-I曲线,并分析了其空间差异的特征.太湖栈桥头的P-I曲线呈现出明显的光抑制现象;在胥口湾中心和直湖港河口,P-I曲线呈现出弱的光抑制现象;而在太湖中心区域,P-I曲线只达到了光饱和状态,并未出现光抑制现象.单位叶绿素a的最大光量子产额的大小顺序为太湖中心区域、梅梁湾的栈桥头、直湖港的河口区及胥口湾的湖心区.  相似文献   
4.
曹妃甸老龙口现代沉积环境及重金属污染特征研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用测年、重金属测定、粒度测定等方法,对河北曹妃甸老龙口区域的7个柱状沉积物进行了粒度、沉积物的测年、重金属含量测定和分析,探讨潮滩重金属沉积的控制因素和迁移规律.结果显示,老龙口潮滩属于细沙和粉沙,根据同位素测年结果,L06沉积速率最大,为0.90cm/a;其余柱状样沉积速率均小于0.5cm/a,平均沉积速率为0.32cm/a,曹妃甸潮滩属于缓慢沉积;柱状样垂直方向波动剧烈,受人类活动影响明显.重金属的含量在柱样的30~40cm深度呈现向表层递增的趋势,Hg、Cr的污染比较严重、其他元素基本无污染.虽然多数重金属元素在背景值附近没有出现污染现象,生态危害性极低,但是,受Pb、Hg中度重金属生态危害的影响,该区域多种重金属生态危害指数(ERI)达158.41,表现为中等程度的生态危害性;存在一定的潜在生态风险.  相似文献   
5.
为探讨南京秋季霾污染过程发生的主要影响因素,利用南京信息工程大学太阳光度计观测霾污染发生天气下AOD(aerosol optical depth,气溶胶光学厚度)数据,计算AE440-1020(?ngstr?m Exponent,波长指数)以及a2(光谱曲率),结合CALIPSO(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations)卫星气溶胶组分分析以及MODIS(Moderate Resolution Imaging Spectroradiometer)火点数据,对2015年10月南京霾污染过程进行分析.结果表明:2015年10月出现的两次霾污染过程期间南京地区AE440-1020均高于1.0并且a2呈负值,其中10月16日AQI达到峰值(201),AOD500达1.51,AE440-1020达1.37,a2达-0.77;这两次较为严重的霾污染过程均主要由人为因素(工业污染、城市建设、生物质燃烧、汽车尾气排放等)产生的细粒子所致.后向轨迹分析发现,2015年10月16日南京地区霾污染天气发生的主要原因是区域型污染,同时受长距离输送影响,大量携带人为因素产生的细粒子以及少量沙尘等污染物的空气团途经内蒙古、山东等地到达南京,加剧了当日的污染程度;2015年10月23日南京地区霾污染天气的发生则主要受长距离输送影响,同时也受到区域型污染影响,加剧了当日的污染程度.研究显示,在稳定的气象条件下,较高的相对湿度、较低的地表风速、低混合层高度以及贴地逆温的出现是诱发霾污染天气产生的有利气象条件.   相似文献   
6.
不同季节气象条件对北京城区高黑碳浓度变化的影响   总被引:2,自引:0,他引:2  
利用2013年至2015年北京城区黑碳气溶胶(下文统称为"BC")和PM2.5观测资料,结合地面气象观测资料、ECMWF边界层高度再分析资料和FNL/NCEP不同高度风速再分析资料,讨论了BC质量浓度及其在PM_(2.5)质量浓度中所占比例(下文统称"黑碳占比")的季节、月、日变化特征,并通过计算北京城区BC浓度与不同高度风速的相关矢量,分析了气象条件和外来输送对北京城区BC浓度变化的影响.结果发现:研究时段内北京城区BC浓度平均值为(4.77±4.49)μg·m~(-3);黑碳占比为8.23%±5.47%.BC浓度和黑碳占比在春、夏季低,秋、冬季高,其日变化特征在4个季节均为"白天低夜间高"的单峰型特征.随着PM_(2.5)浓度的升高,BC浓度增大,黑碳占比减小.当北京地区风向为东北、东北偏东、东南和西南偏西(主风向)时,BC浓度与风速和边界层高度均呈反向变化,即随风速和边界层高度的增大而减小.另外不同季节BC浓度随风速变化的临界值及其变化速率不同.冬季高BC浓度时段,北京城区BC浓度在低层大气的关键影响区分别位于河北南部与山东交界地区以及河北西北部与山西内蒙交界地区;高空关键影响区主要位于北京以西的河北西部、山西北部和内蒙古地区.  相似文献   
7.
2015年5月17~20日嘉兴市发生了一次持续性雾霾过程,本研究根据5月17~22日污染气体(O_3、SO_2、NO_2和CO)、PM_(10)、PM_(2.5)、10 nm~10μm气溶胶数浓度、气象要素及边界层探空数据,分析了这次过程的成因及其不同污染物的变化特征.结果表明,副高位置北抬、均压场结构、地面静小风和边界层中逆温层为这次雾霾过程的发生和维持提供了水汽、动力和热力条件.这次雾霾过程包含1次降雨和2次雾过程(雨雾和辐射-平流雾).雾霾过程中NO_2、CO、PM_(10)和PM_(2.5)的浓度较高,SO_2和O_3的浓度较低.强降雨对PM_(10)、PM_(2.5)和SO_2清除作用较大,弱降雨会加重污染过程.雨雾的发展过程中,PM的浓度持续积聚;辐射-平流雾过程中,PM浓度先快速下降然后再增加.不同过程中气溶胶数浓度谱均为单峰型分布,但是谱型差异较大,干净天、降雨、雾霾过程、雨雾和辐射-平流雾过程中气溶胶数浓度谱峰值分别位于20~30 nm、100 nm、30~60nm、120 nm和90 nm.表面积浓度谱在干净天、降雨、雾霾和雨雾过程中均为三峰型分布,辐射-平流雾为四峰型分布.  相似文献   
8.
1960年以来山西秋季连阴雨的气候特征分析   总被引:1,自引:0,他引:1  
王栋  谭桂容  耿新 《灾害学》2015,(1):75-81,86
利用山西省66个测站1960-2009年秋季(9-11)月的逐日降水量,采用线性倾向估计、累积距平法、EOF及Morlct小波分析方法,系统地分析了山西秋季连阴雨的变化趋势和时空结构特征,建立了秋季连阴雨强度指数模型。结果表明:山西秋季年际区域性连阴雨次数和阴雨日数呈明显的线性减少趋势,过程雨量呈波动上升趋势,连阴雨次数的累积距平表现为"三升两降"型变化;山西秋季连阴雨的年际和年代际变化特征明显,1960-1970年代中期,有5~6年的周期变化,1990年代后期有2年的周期变化特征,年代际变化呈"波动状"变化规律;全省秋季连阴雨从南到北呈递减分布,除北部的天镇、山阴、繁峙等呈增加趋势外,各代表站表现为一致的减少趋势,南部、东南部及五台山为连阴雨多发区,大同盆地、忻州盆地、太原盆地为少发区;山西秋季连阴雨存在2~3年、8年左右的显著振荡周期。1970年代中期到1980年代中期,8年左右振荡周期的振幅最大,能量最强,是周期振荡最强的阶段。  相似文献   
9.
长三角典型站点冬季大气PM2.5中OC、EC污染特征   总被引:1,自引:0,他引:1  
康晖  朱彬  王红磊  施双双 《环境科学》2018,39(3):961-971
对2015年1月9日~2015年1月31日临安、南京和苏州3个站点采集的PM_(2.5)样品(共计279组),使用热光反射法(thermal/optical reflectance,TOR)分析了样品中有机碳(OC)与元素碳(EC)的含量,并研究了长三角地区冬季PM_(2.5)中OC和EC的污染特征.结果表明,采样期间临安、南京和苏州的PM_(2.5)平均质量浓度分别为(123.56±61.11)、(144.77±62.91)和(156.5±68.97)μg·m-3,均超过我国《环境空气质量标准》(GB 3095-2012)规定的PM_(2.5)日均值75μg·m-3;其中3个站点OC与EC的平均质量浓度依次分别为(21.93±11.69)/(6±3.6)、(20.32±10.3)/(5.39±3.07)和(27.08±14.35)/(6.4±4.29)μg·m-3.临安作为长三角大气环境背景点,OC与EC的污染也较为严重.3个站点OC与EC的相关性为临安(R2=0.83)、南京(R2=0.72)和苏州(R2=0.72),表明冬季长三角地区的碳质气溶胶的来源较为一致和稳定.3个站点样品中的OC/EC值均大于2.0,样品的OC/EC值主要分布在2.5~6.0这个区间内,表明燃煤源和机动车尾气排放源是OC与EC的主要来源.使用EC示踪法估算临安、南京和苏州3个站点的二次有机碳(SOC)平均质量浓度分别为(9.23±5.26)、(6.82±4.36)和(12.56±7.52)μg·m-3,在OC中占比为42%、34%和46%,表明SOC是OC的重要组成部分.后向轨迹显示,PM_(2.5)、OC和EC的质量浓度与主要气团的传输路径有较好的相关性,自空气质量较差区域气团的PM_(2.5)、OC和EC的质量浓度是来自空气质量较好区域的1.14~1.7倍、1.55~2.1倍和1.94~2.47倍.  相似文献   
10.
城市化和工业化产生的碳排放是当今中国影响气候变化的重要因素,经济增长和碳排放之间的关系是当今研究的热点问题.本文研究南京市低碳经济发展的现状、阶段及演化特点,发现30年来,南京市低碳经济发展呈现波动反复的特点,扩张负脱钩3次,较高能源消费的经济增长形式-扩张连接4次,经济发展实现与能源消费较好脱钩的弱负脱钩1次,强脱钩4次,其余为弱脱钩.基于内生经济增长模型Moon-Sonn,建立了南京经济增长预测模型,并探讨了不同发展模式下南京未来50年低碳经济水平及碳排放量演化规律,预测了不同低碳经济水平下南京碳排放量和峰值出现的时间.研究结果显示,按现行经济模式,南京2050-2060年碳总量增加速度逐步减缓,约在2058年左右实现碳总量的负增长.50年内南京市预计为扩张负脱钩和扩张连接,难以实现稳定的离水平低碳经济增长模式;设定最优能源强度参数的模式下,南京迅速实现稳定强脱钩的低碳经济,碳释放量EKC曲线呈现倒U型,2015年左右即达到峰值.综合各种因素,南京近几年将延续模式l的增长模式,在2020年左右实现向模式2转变,其碳释放量约于2028年前后出现峰值.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号