首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   12篇
  国内免费   67篇
安全科学   2篇
废物处理   3篇
环保管理   3篇
综合类   61篇
基础理论   2篇
污染及防治   65篇
评价与监测   2篇
社会与环境   1篇
  2023年   2篇
  2022年   2篇
  2021年   10篇
  2020年   5篇
  2019年   12篇
  2018年   15篇
  2017年   9篇
  2016年   7篇
  2015年   7篇
  2014年   16篇
  2013年   19篇
  2012年   16篇
  2011年   12篇
  2010年   7篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
1.
采用超声和生物活性炭处理复杂染料废水,探讨超声对生物活性炭降解复杂染料废水的影响机理。结果表明,超声/生物活性炭处理效果优于生物活性炭,运行10d,COD降低较快,达到20.5mg/L,低于生物活性炭处理的39.8mg/L;色度为136倍,远低于用生物活性炭处理的217倍;BOD5最终降为2.57mg/L。紫外光谱和气相色谱分析表明,复杂染料废水中含有烷类、酚类、醛类、脂类、苯类等有机物,超声/生物活性炭处理可使这些有机物种类明显减少,仍存在的有机物浓度也大幅减少,而且部分有机物的分子结构由复杂转化为简单。这表明,超声处理可以促进染料废水中复杂有机物分子结构向简单转化,增强生物活性炭对复杂有机物的降解能力,从而大幅降低复杂废水的BOD5、COD和色度。  相似文献   
2.
2015年7月3—17日,采集天津3条典型道路路边道路交通环境中不同粒径段的PM_(2.5)样品,分析其中的12种金属元素,并开展健康风险评价。结果表明:(1)3种典型道路上PM_(2.5)均超过《环境空气质量标准》(GB 3095—2012)中二级日均限值(75μg/m~3)。主干道、次干道、快速路上PM_(2.5)中金属元素累计质量浓度分别为0.68、0.74、0.67μg/m3。(2)多数金属元素的粒径分布存在明显差异。Zn和Cu为轮胎和刹车片磨损标志物,峰值在较大粒径颗粒物上。Sb通常作为添加剂以Sb2S3的形式加入到刹车片中,峰值出现在0.2~1.0μm粒径段。(3)Cr、Co、Ni、Cu、Zn、As、Cd、Sn、Sb和Pb的富集因子10,受到人为源的作用。对于儿童和成人群体,全部道路路边环境的非致癌风险危险指数均大于1,具有非致癌风险。PM_(2.5)中Cr、Co、Ni、As、Cd的致癌风险基本上均超过美国环境保护署推荐的可接受风险阈值(10-6),具有明显的致癌效应。  相似文献   
3.
碳氮比对低温投加介体生物反硝化脱氮的影响   总被引:1,自引:0,他引:1  
污水的生物脱氮效果受低温抑制,投加氧化还原介体有利于反硝化过程。采用规格相同的序批式反应器,使用人工配制硝酸盐废水和经过驯化的活性污泥,考察了不同碳源浓度(碳氮比)对低温(10℃)投加氧化还原介体1, 2-萘醌-4-磺酸(NQS)污水生物反硝化脱氮过程的影响。结果表明:当碳源浓度(以COD计)为150~400mg·L~(-1) (碳氮比为1.8~4.7)时,脱氮效率随碳氮比的升高而升高;当碳源浓度为400~550 mg·L~(-1) (碳氮比为4.7~6.5)时,脱氮效率随着碳氮比的升高而降低;当碳源浓度为400 mg·L~(-1) (碳氮比为4.7)左右时效果最好,总氮去除率最高为64.7%。对于脱氮速率,介体强化脱氮速率随着碳氮比的升高而升高。同时,探讨了投加介体污水生物反硝化脱氮的机理,发现投加介体降低了体系的氧化还原电位(ORP),有利于反硝化脱氮反应的进行。  相似文献   
4.
为实现高氯酸盐还原颗粒污泥的快速培养,以反硝化颗粒污泥为接种污泥,对高氯酸盐还原颗粒污泥的快速培养进行了研究。在降低进水硝酸盐(NO_3~-)浓度的同时,采用逐步升高进水高氯酸盐(ClO_4~-)浓度的方法,考察了高氯酸盐还原颗粒污泥培养过程中ClO_4~-的去除以及颗粒污泥的特性。结果表明:以反硝化颗粒污泥为接种污泥,经过50 d快速培养出高氯酸盐还原颗粒污泥,ClO_4~-去除速率达96%以上;其混合液悬浮固体浓度(MLSS)为50.68 g·L~(-1),混合液挥发性固体浓度(MLVSS)为40.58 g·L~(-1),主要粒径分布在0.60 mm和1.00~2.00 mm。NO_3~-浓度逐步降低的培养方式可缓解ClO_4~-对颗粒污泥中各类微生物的毒性,为高氯酸盐颗粒污泥的快速培养提供了新的方法,具有重要的理论和实践意义。  相似文献   
5.
红霉素对产甲烷菌的抑制及其驯化   总被引:1,自引:0,他引:1  
红霉素是一类具有一定生物毒性的抗生素类药品,为探明红霉素对产甲烷菌的抑制作用及其可驯化能力,依次在厌氧瓶中进行厌氧毒性试验、在升流式厌氧污泥床反应器(UASB)中进行连续实验,测定累计甲烷产量、相对产甲烷速率、COD去除率、甲烷含量.结果表明,红霉素为150 mg.L-1时产甲烷速率降为56.1%;250 mg.L-1时反应速率降低99%以上,活性受到完全抑制.保持红霉素投加量为20 mg.L-1连续运行60 d,COD去除率、甲烷含量可达到81.4%、64.2%.红霉素对甲烷菌有抑制作用,半抑制浓度为150 mg.L-1.甲烷菌对红霉素有一定的驯化能力,驯化60 d后COD去除率、甲烷含量较未驯化时可提高15.13%、22.05%.  相似文献   
6.
通过投加不同浓度的纳米零价铁(NZVI)和零价铁(ZVI),考察了暗发酵制氢过程中铁离子组成和浓度变化、氢化酶和脱氢酶活性,研究了2种添加剂强化餐厨垃圾高温((55±1)℃)暗发酵制氢的作用机制。结果表明:投加NZVI和ZVI均可提高餐厨垃圾暗发酵制氢性能;当投加100 mg·L~(-1) ZVI时,产氢效果最佳,最大产氢潜力和最大产氢速率分别为425.72 mL和66.32 mL·h~(-1),是投加NZVI实验组的1.64倍和1.34倍,代谢途径是以乙醇型发酵为主的混合型发酵;在投加NZVI和ZVI后,暗发酵制氢末端产物的Fe~(2+)和Fe~(3+)浓度升高,投加300 mg·L~(-1)NZVI和100 mg·L~(-1) ZVI实验组Fe2+浓度最大,是未投加实验组的2倍和1.87倍;与反应前相比,Fe~(2+)显著升高,Fe~(3+)由于微生物利用与转化浓度降低,同时可有效提高氢化酶活性。投加100 mg·L~(-1) ZVI不仅可提高氢化酶活性,还可提高脱氢酶活性。以上结果可为提高餐厨垃圾等复杂有机废物的高效能源化提供参考。  相似文献   
7.
采用负载经驯化后微生物的活性炭深度处理实际印染废水,研究生物活性炭系统中存在的生物相及其降解有机污染物的作用,并表征了处理后印染废水的生物毒性.结果表明,生物相中含有草履虫、轮虫及钟虫等原生动物.随着运行次数的增加,活性炭反应器在运行5次后出水的COD、NH3-N及色度去除率骤降,但是生物活性炭处理后出水的COD、NH3-N及色度去除率缓慢下降.生物活性炭能很好地降解印染废水中的苯酚类和稠环芳烃污染物.本研究中生物活性炭反应器对氨氮和COD的去除符合一级动力学方程,去除动力学常数分别为1.02和0.96.经过生物活性炭的处理可以将印染废水的生物毒性降到适于小球藻生长的水平.  相似文献   
8.
为了研究水中存在Br-的情况下,Fe3+和Cu2+对三卤甲烷(THMs)的生成及CHCl3、CHBr Cl2、CHBr2Cl、CHBr34种消毒副产物相对分布的影响,以腐殖酸模拟氯消毒过程中的前体物进行实验。结果表明,在p H为6、7和9 3种条件下,Fe3+抑制了THMs的生成,p H=6时只有CHCl3生成量随着Fe3+浓度的增加逐渐减少,其余3种消毒副产物均在增加,p H=7时4种消毒副产物浓度均减小并在Fe3+浓度为2 mg/L时生成量最低,p H=9时的生成趋势与p H=6时类似。Cu2+能促进THMs的生成,在p H为6、7和9时,当加入0.5 mg/L Cu2+时,THMs总量分别增加了16.7%、22.6%和2.5%,随着p H增加,THMs总量增加。在3种p H环境中,Cu2+对THMs生成的影响大于Fe3+,在偏酸性环境中,Fe3+影响THMs生成,产生的致癌风险高,当金属离子浓度为2.5 mg/L时,致癌风险相差最高为15%,在中性和偏碱性环境中,Cu2+影响THMs生成,产生的致癌风险高。  相似文献   
9.
针对平原城市缓流河道普遍存在的季节性水质恶化问题,采用预氧化、微絮凝+高速过滤对天津市某缓流河道水体进行中试规模实验。结果表明,该处理技术具有处理周期长(24 h)、过滤滤速高(平均为43.26 m·h~(-1))和出水效果好(出水水质优于地表水Ⅳ类水质标准)的特点。同时发现:单位面积滤柱的产水率呈"阶梯"下降趋势;高速过滤的堵塞特征曲线服从三次多项式分布;系统过滤历经增长期、稳定期和衰减期,其中增长期为3~4 h,稳定期约14 h,过滤系数λ为(0.020 1±0.001 3) cm~(-1)(置信度P=95%),其可作为系统基本属性的定量参数。  相似文献   
10.
采用臭氧-生物活性炭(O3-BAC)组合工艺对某工业园区再生水厂MBR出水进行了深度净化的中试研究,主要考察了组合工艺各节点对常规指标的处理效果。结果表明,臭氧投加量约3 mg/L(H2O)、臭氧接触塔接触时间为30min、活性炭滤池空床接触时间(BECT)为15 min时,O3-BAC组合工艺能有效去除水中色度、浊度,平均色度和浊度分别从21度和7.8 NTU降至3度和2.0 NTU以下;组合工艺对UV254、高锰酸盐指数的平均去除率分别约为39%和35%;对NH4+-N有一定的去除,去除率为58%~77%;组合工艺对粪大肠菌群去除效果显著,平均去除率在95%以上。O3-BAC组合工艺是一种有效工业园区再生水深度净化技术。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号