首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   40篇
  国内免费   129篇
安全科学   11篇
废物处理   15篇
环保管理   22篇
综合类   240篇
基础理论   18篇
污染及防治   35篇
评价与监测   9篇
社会与环境   16篇
灾害及防治   2篇
  2024年   1篇
  2023年   6篇
  2022年   23篇
  2021年   39篇
  2020年   39篇
  2019年   40篇
  2018年   13篇
  2017年   18篇
  2016年   31篇
  2015年   27篇
  2014年   27篇
  2013年   16篇
  2012年   24篇
  2011年   10篇
  2010年   14篇
  2009年   21篇
  2008年   8篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2000年   1篇
  1992年   1篇
排序方式: 共有368条查询结果,搜索用时 15 毫秒
1.
基于修正A值法核算成都市季节大气环境容量   总被引:2,自引:0,他引:2  
本文选取成都市2010-2012年的地面气象观测资料及温江站探空资料,通过重新计算成都地区季节A值建立修正A值法,再对成都市的季节环境容量进行核算。研究结果表明:1成都四季A值分别为1.01、1.28、0.46、0.38;2成都市各污染物均为夏季环境容量最大,冬季环境容量最小,各污染物的夏季环境容量均约为冬季的5倍以上,其中SO2的夏季环境容量达到了冬季的13倍;3季节间大气环境容量的差别主要源于湿沉降在年内分布的不均匀,其次通风量季节间的不同也是其中一个重要诱因。  相似文献   
2.
基于前向神经网络的广义环境系统评价普适模型   总被引:2,自引:1,他引:1  
为了建立由水环境、空气环境、生态环境、水资源环境、灾害环境、遥感环境、社会经济环境等不同环境系统组成的广义环境系统评价都能普适、通用的神经网络模型,针对BP神经网络因收敛速度慢、易于陷入局部极值而使实用性受限的缺陷,提出以双极性sigmoid函数作为网络隐层节点(神经元)的激活函数,而网络输出为所有隐层节点输出的线性求和的前向神经网络的广义环境系统评价模型.在设置广义环境系统指标参照值和指标值规范变换式,并对指标值进行规范变换的基础上,分别构建了适用于广义环境系统评价的任意2个指标规范值的前向神经网模型(NV-FNN(2)结构)和任意3个指标规范值的前向神经网模型(NV-FNN(3)结构).而对于指标较多的广义环境系统评价,只要将多指标分解为以上2个指标和3个指标的两种简单结构的前向神经网络的广义环境系统评价模型的组合表示即可.理论分析和实例检验结果表明:该模型对任意广义环境系统的规范指标值皆普适、通用,因而使不同环境系统的评价变得简洁、统一.规范变换和优化算法相结合的建模思想和方法对简化广义环境系统评价的多元回归、投影寻踪回归、回归支持向量机和径向基神经网络建模亦有借鉴和启迪作用.  相似文献   
3.
论文利用ERA-Interim(0.5°×0.5°,简称ERA)、NCEP/NCAR2(2.5°×2.5°,简称NCEP2)两种不同分辨率的再分析资料和探空观测资料,首先分析了夏季(7月)和冬季(1月)青藏高原(以下简称高原)上大气水汽含量大值区(简称"湿池")的区域分布特征,然后基于ERA资料分析了1979—2012年间高原"湿池"的一些变化特征,发现了一些新的事实。主要结果包括:在对流层中上层,高原上无论夏、冬季都有大气水汽含量的高值中心——高原"湿池"存在。夏季7月高原"湿池"强度最强,ERA资料除了在高原南部有自西到东的连续高湿中心带外,在高原西北部还有一个高湿中心;NCEP2资料仅在高原东南部和西南部有两个高湿中心。冬季1月,两种资料均只在高原东南部有高湿中心。总体上,ERA资料与探空观测资料的高湿中心区更为接近。7月,高原南部高湿中心在1990年代中期(1994—1996年)之后持续偏强,西北部中心强度有弱—强—弱—强交替变化特征;1月,高湿中心在1980年代末期开始持续偏强。高原南部高湿中心带在7月几乎是一个连续的区域,1996年以后这一特征更为明显,在1月则是分为东西两段的高湿中心带。  相似文献   
4.
以川芝6号为发酵菌种,对三七渣固态发酵灵芝菌的培养基制备条件进行了研究和优化。结果表明,优化的培养基制备条件为采用过60目筛的三七渣,酵母粉添加量5%(质量分数,下同),磷酸二氢钾添加量0.025%,培养基含水量70%,不调节初始pH。在此条件下进行灵芝发酵,发酵培养物中灵芝菌丝体的质量分数最高可达31.27%。  相似文献   
5.
6.
污染天气分型研究对空气质量预报、污染源总量控制等具有重要的意义。基于2013年1月~2014年12月高空及地面天气形势划分了成都市的天气类型并探讨各天气类型下的空气质量状况及其污染天气特征,以期为空气质量预报和预警提供依据。结果表明,空气污染过程中,500 hpa环流形势主要有两槽一脊型、一槽一脊型、纬向型、槽脊同位相型等,其中两槽一脊型和槽脊同位相型控制下的空气质量最差。发生空气污染时,地面环流形势可分为高压型、高压后部型、高压底部型、低压型、低压顶部型、低压前部型、低压底部型、鞍型场型、冷锋前部型和均压场型,其中高压型、高压底部型、高压后部型控制下的空气质量最差。  相似文献   
7.
为研究建筑废物红砖和工业废物煤渣用作人工湿地脱氮基质的可行性,分别通过静态吸附实验和动态NHf—N去除效果实验进行考察。结果表明,红砖和煤渣对NH4+-N最大静态吸附量分别为0.2533mg/g和0.0533mg/g,其吸附等温曲线均符合Freundlich型吸附方程,吸附常数分别为0.0419和0.0091;红砖煤渣组合对污水中NH4+-N平均动态脱除率达到41.18%,高于红砖的37.63%和煤渣的30.92%。  相似文献   
8.
燃煤电厂产生和排放的PM2.5中水溶性离子特征   总被引:5,自引:2,他引:3  
为了认识我国燃煤电厂一次PM2.5排放特征,并定量评估大规模开展烟气脱硫与脱硝对其影响,本研究选取了国内一个煤粉炉电厂和一个循环流化床电厂,对其产生和排放的PM2.5进行现场测试,并进行水溶性离子组分的分析.结果表明,在所测的这两个电厂中,循环流化床电厂产生的PM2.5的质量浓度高于煤粉炉电厂产生的PM2.5的质量浓度,但是这两个电厂排放的PM2.5的质量浓度相当.产生此结果的主要原因是该循环流化床电厂配备的电袋复合除尘器比煤粉炉电厂的普通电除尘器对PM2.5去除效率更高.煤粉炉电厂产生PM2.5中水溶性离子浓度低于循环流化床电厂,但是煤粉炉电厂排放PM2.5中水溶性离子浓度却远远高于循环流化床电厂,表明煤粉炉电厂排放的PM2.5受脱硫和脱硝设施的影响较大.煤粉炉烟气脱硝过程中可能形成硫酸雾,烟气中的部分硫酸雾和过剩的NH3反应生成NH4HSO4进入颗粒相,同时降低了PM2.5的p H值;而脱硫过程中脱硫液的夹带也会导致NH+4和SO2-4进入PM2.5.所以,虽然两个电厂产生的PM2.5中水溶性离子均以Ca2+和SO2-4为主,但煤粉炉排放PM2.5中的水溶性离子则以NH+4和SO2-4为主.  相似文献   
9.
低DO下AGS-SBR处理低COD/N生活污水长期运行特征及种群分析   总被引:3,自引:1,他引:2  
本研究在序批式活性污泥反应器(SBR)中接种好氧颗粒污泥(AGS),构成AGS-SBR系统,研究其在低DO(0.5~1.0mg·L~(-1))条件下,处理低COD/N比(4.0)生活污水同步脱氮除磷的长期稳定运行特性,并解析反应器的主要菌群构成.结果表明,在反应器运行的180d里,AGS-SBR系统表现出了良好且稳定的除污能力,反应器对水体中COD、NH~+_4-N、TN和TP平均去除率分别达到87.17%、95.21%、77.05%和91.11%.好氧颗粒污泥沉降性能一直很好,污泥始终保持着完整的颗粒外观和密实紧凑的结构,并没有出现明显的颗粒污泥解体的现象.同时,高通量测序结果表明,变形菌门、厚壁菌门、绿菌门、绿弯菌门和拟杆菌门为SBR-AGS反应器中主要优势菌群.Denitratisoma、Planctomycetaceae、Thauera、Comamonas、Nitrosomonas和Nitrospira是反应器中与脱氮有关菌群;Clostridium和Anaerolinea是除磷相关细菌.  相似文献   
10.
为探明三峡支流水体富营养化频发与库岸消落带土壤氮素"源-库"关系转化之间的内在关系,采用分级浸提法,分析了三峡库区长江万州段干流、苎溪河支流、密溪河支流消落带落干期土壤可转化态氮含量和分布特征.结果表明,与三峡库区万州段干流相比,支流消落带落干期土壤有机质和总氮含量较高,而阳离子交换量(CEC)和p H值较低.三峡干支流消落带土壤可转化态氮(TF-N)以OSF-N(有机态和硫化物结合态)为主,且含量上OSF-NIMOF-N(铁锰氧化物结合态氮)IEF-N(离子交换态氮)CF-N(碳酸盐结合态氮);而空间分布上,TF-N表现为:密溪河苎溪河长江干流,4种TF-N形态中IEF-N和OSF-N在干支流间无显著差异,而CF-N和IMOF-N分布与TF-N相反,是造成干支流消落带TF-N差异的主要因素.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号