首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  国内免费   1篇
  完全免费   5篇
  综合类   8篇
  2018年   2篇
  2017年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
排序方式: 共有8条查询结果,搜索用时 46 毫秒
1
1.
长江三角洲地区大气O3和PM10的区域污染特征模拟   总被引:20,自引:10,他引:10       下载免费PDF全文
以TRACE-P污染源资料及上海市地方排放清单为基础,采用Models-3/CMAQ环境空气质量模型和中尺度气象模式MM5,模拟研究了2001-01和2001-07长三角近地面二次污染物O3及PM10的浓度分布及输送状况,并以上海市国控点2001年冬、夏季各10 d的小时监测数据对模型进行了验证.验证结果显示,Models-3/CMAQ对O3和PM10的模拟结果与监测值的相关系数分别为0.77和0.52;一致性指数分别达到0.81和0.99.模型对O3小时最高浓度的估算偏低27%,标准偏差为-3.1%;对PM10小时平均浓度的估算偏低10%,标准偏差为46%.模型已具备再现和模拟长三角大气污染输送过程的能力,且误差落在可接受的范围之内.模拟结果显示,2001-07长三角区域16个主要城市中,有14个城市O3小时最大浓度超过国家二级标准,高浓度O3可覆盖苏南和浙北广大区域.2001-01泰州、扬州、南京、镇江、常州等城市受本地排放源和北部大气污染输送的影响显著,大气PM10日均浓度超过PM10国家二级标准.长三角地区环境空气质量与污染类型受大气污染传输与化学转化的影响十分明显.夏季太阳辐射较强时,南部城市排放的污染物常以二次污染物的形式影响下风向城市;太阳辐射较弱的情况下,则以一次污染物输送为主的形式影响周边地区.冬季长三角区域颗粒物污染总体水平较高,这与我国北方地区排放的颗粒物在西北风作用下向长三角输送造成的影响密切相关.长三角地区的大气污染已逐渐从局地转为区域问题.  相似文献
2.
北京及周边地区大气污染数值模拟研究   总被引:13,自引:7,他引:6  
北京周边地区污染源对北京市区大气环境的影响不可忽视.利用区域大气污染模式,系统模拟分析2002-08-17T09:00-2002-08-29T08:00污染传输过程;选择典型污染时段,结合气象资料进行比较分析,计算各时段周边地区和北京自身大气污染物对北京大气环境污染的贡献和贡献率;进一步证实了在大气条件有利于污染物输送的背景下,周边地区污染源的中远距离输送对北京大气环境质量的影响不可忽略.研究表明:有特殊天气背景时,即研究区域在西南风气流场的控制之下,周边地区污染源对北京的贡献比北京自身的大;没有特殊天气时,北京自身的贡献大于周边地区对其的贡献.  相似文献
3.
 采用MM5/CMAQ模型模拟了2004年长江三角洲地区大气污染物的输送与扩散对上海地区空气质量的影响,并定量研究了外部源区域输送和本地源对上海市空气质量的贡献.结果表明,上海地区受本地源和外地源的影响程度及相互比例随着季节的变化存在很大差异;一次污染物SO2和二次污染物SO42-所受到的影响也呈现不同的特点.外部源区域输送对上海地区SO2浓度的贡献率为7%~17%,而对SO42-浓度的贡献率在60%~70%.贡献率垂直廓线分析表明,上海地区SO2外部源贡献率随高度存在着明显的变化,总体上随高度的增长呈非线性增长,而SO42-外部源贡献率随高度的变化不明显.  相似文献
4.
长江三角洲地区大气O3和PM10的区域污染特征模拟   总被引:6,自引:1,他引:5  
以TRACE-P污染源资料及上海市地方排放清单为基础,采用Models-3/CMAQ环境空气质量模型和中尺度气象模式MM5,模拟研究了2001-01和2001-07长三角近地面二次污染物O3及PM 10的浓度分布及输送状况,并以上海市国控点2001年冬、夏季各10 d的小时监测数据对模型进行了验证.验证结果显示,Models-3/CMAQ对O3和PM10的模拟结果与监测值的相关系数分别为0.77和0.52;一致性指数分别达到0.81和0.99.模型对O3小时最高浓度的估算偏低27%,标准偏差为-3.1%;对PM10小时平均浓度的估算偏低10%,标准偏差为46%.模型已具备再现和模拟长三角大气污染输送过程的能力,且误差落在可接受的范围之内.模拟结果显示,2001-07长三角区域16个主要城市中,有14个城市O3小时最大浓度超过国家二级标准,高浓度O3可覆盖苏南和浙北广大区域.2001-01泰州、扬州、南京、镇江、常州等城市受本地排放源和北部大气污染输送的影响显著,大气PM10日均浓度超过PM10国家二级标准.长三角地区环境空气质量与污染类型受大气污染传输与化学转化的影响十分明显.夏季太阳辐射较强时,南部城市排放的污染物常以二次污染物的形式影响下风向城市;太阳辐射较弱的情况下,则以一次污染物输送为主的形式影响周边地区.冬季长三角区域颗粒物污染总体水平较高,这与我国北方地区排放的颗粒物在西北风作用下向长三角输送造成的影响密切相关.长三角地区的大气污染已逐渐从局地转为区域问题.  相似文献
5.
珠江三角洲地区2006年颗粒物污染过程识别与分析   总被引:2,自引:0,他引:2  
利用Matlab小波分析工具,分析了珠三角(珠江三角洲)地区2006年PM10的突变特征,并对典型区域性颗粒物空气污染过程进行了识别.结合全球资料同化系统(GDAS)气象数据,运用HYSPLIT v4.9模式,以4个典型空气观测站点的数据为基础,分析了高污染过程期间后向气流轨迹的特征和区域ρ(PM10)的变化与输送过程,并对比分析了污染超标日和非超标日的ρ(PM10)与风速、相对湿度、平均温度及地面平均气压等常规气象要素之间的关系.结果表明:影响珠三角地区颗粒物高污染时段输送的气流主要来源于内陆东北气流和沿海气流.本地排放和区域城市间传输是造成珠三角地区颗粒污染过程的主要原因.静风或极小风,以及较高地面平均气压是影响珠三角地区PM10污染的主要气象要素.  相似文献
6.
基于WRF/Chem模式,设置多组区域排放源的情景实验定量估算河南、京津冀、山东、山西、安徽和江苏、湖北6个区域人为源排放对河南省2015年12月PM2.5和PM10浓度贡献率,并结合气象资料研究3个代表性城市的污染输送特征.结果表明:河南省冬季PM2.5和PM10主要来源为本省排放,平均贡献率分别为54.83%、61.32%.区域污染输送对河南颗粒物的贡献也占有很大比例,京津冀、安徽和江苏、山东、山西以及湖北对PM2.5平均贡献率分别为11.95%、11.69%、7.95%、7.40%、4.30%,对PM10平均贡献率分别为10.42%、10.03%、7.00%、6.89%、3.80%.PM2.5外来输送率比PM10要高,表明细颗粒物比粗颗粒物更易跨区域长距离输送.冬季长持续时间的污染过程大多受静风或小风控制,省内污染贡献最大,过程结束时伴随着大风,周边区域的污染贡献有所增加.不同城市的颗粒物来源与其地理位置、风速、风向等气象条件密切相关.区域污染来源具有复杂性,改善河南省空气质量是需要整个区域共同面对和解决的问题.  相似文献
7.
利用地面气象观测资料、PM2.5浓度监测资料和数值模式产品对2016年12月14-24日江苏遭遇的一次长时间霾天气过程进行分析.研究结果表明:过程期间有两次冷空气南下影响江苏省,两次冷空气均带来大风和降水,有效地清除了前期污染物,但随后全省PM2.5浓度开始升高.第一次冷空气强度强于第二次,造成的污染也较重.WRF-Chem模式对本次过程的气象场和PM2.5浓度模拟均较好,模拟观测相关系数分别达到0.52~0.99和0.40.模式能够较好地模拟出污染物的输送过程和时空分布.与第二次冷空气过程相比,第一次冷空气过程存在明显的污染物自北向南输送过程,100~500 m高空持续偏北气流(第2次过程为西北-偏西气流),期间全省平均边界层高度(PBLH)只有260 m(低于第2次过程的500 m),不利于污染物垂直扩散,造成地面浓度较高.利用HYSPLIT-4模式追踪了两次过程中淮安、泰州、无锡三站上空100 m处大气48 h后向轨迹,发现第一次过程中污染物来自山东中西部,第二次来自西部内陆地区.  相似文献
8.
利用WRF-Chem模式模拟2015年11月27日—12月1日、12月5—14日、12月19—25日河南3次重污染过程,结合空气污染资料和ERA-Interim再分析资料,对比分析了这3次重污染过程的开始、持续和结束及污染物的输送特征.结果表明,静稳天气有利于污染的发展持续,3次重污染过程的结束均是由西路冷空气入侵造成的.第1次重污染过程平均风场上的风速均为小风或静风,从湖北到河南南部风向为偏南风;而第2和第3次重污染过程平均风场分别以偏东和偏北风为主.第2和第3次重污染过程中均存在明显的由北向南的污染物输送过程.3次重污染过程中,河南省本地排放对本省PM2.5浓度的平均贡献率最大,而河南省周边区域对河南PM2.5浓度的平均贡献率在这3次过程中不一样,第1次重污染过程,河南南部主要受偏南风影响,湖北对河南PM2.5浓度的平均贡献率最大,为20.7%;第2和第3次重污染过程主要受偏东风影响,安徽和江苏对河南PM2.5浓度的平均贡献率最大,分别为17.7%和18.5%.3次重污染过程中,安阳的主要污染输送源均不相同,分别来自河北、江苏和安徽、本省.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号