首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  完全免费   12篇
  综合类   18篇
  2018年   1篇
  2017年   3篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2007年   4篇
  2006年   1篇
  2002年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
大气中挥发性有机化合物(VOCs)的人为来源研究   总被引:25,自引:5,他引:20       下载免费PDF全文
在2002年春、夏、秋、冬四季对环境大气中挥发性有机化合物的组成和变化规律进行了研究,在此基础上运用CMB8.0受体模型对各类污染源进行了源解析,得到受体点各人为污染源的年平均贡献率分别为:汽车尾气62%,汽油挥发9%,石油液化气10%,涂料6%,石油化工6%,未知源6%.对不同物种贡献的分析显示,环境大气中的乙烯、苯和甲苯等化合物主要来自于汽车尾气的排放,异戊烷来自于汽油的挥发,石油液化气、涂料、石油化工分别对大气中的异丁烷、正己烷和2,4-二甲基戊烷贡献量最大.  相似文献
2.
利用模拟实验采集了民用燃煤污染源样品,在现场采集了焦化帮石油沥青两类污染源样品,用GC/MS联用技术测定了样品中13种多环芳烃,对分析结果进行归一化处理后确定以上3类污染源多环芳烃源成分谱,在此基础上,对民用燃煤,焦化厂和石油沥青污染源的排放水平,轮廓图特征,排放特征和特征比值进行了比较。  相似文献
3.
机动车尾气排放VOCs源成分谱及其大气反应活性   总被引:16,自引:11,他引:5       下载免费PDF全文
选取轻型汽油车、重型柴油车和摩托车等城市典型机动车种分别采用底盘测功机及实际道路实验,结合SUMMA罐采样的方法,获得了小轿车、出租车、公交车、卡车、摩托车和LPG助动车的尾气VOCs样品,利用气相色谱-质谱分析了各车型机动车尾气VOCs的浓度及其物种组成.结果表明,轻型汽油车尾气VOCs以甲苯、二甲苯等芳香烃为主,占43.38%~44.45%;重型柴油车以丙烷、n-十二烷及n-十一烷等烷烃组分为主,占46.86%~48.57%,还有13.28%~15.01%的丙酮等含氧特征组分;摩托车与LPG助动车的主要成分为乙炔,分别占39.75%和76.67%左右.各车型中,摩托车和轻型汽油车尾气VOCs的化学活性显著高于重型柴油车辆,以上海市为例,其大气化学活性贡献分别占55%和44%左右,是影响城市和区域大气氧化能力的关键污染源,其中以甲苯、二甲苯、丙烯、苯乙烯等关键活性物种的贡献最大.  相似文献
4.
上海中心城区夏季挥发性有机物(VOCs)的源解析   总被引:13,自引:4,他引:9       下载免费PDF全文
2006~2008年夏季在上海徐家汇地区对大气中的挥发性有机物(VOCs)进行连续3h采样(6:00~9:00),共取得72个有效样本.同时,应用PCA/APCS(principal component analysis/absolute principal component scores)受体模型对大气中VOCs来源进行了分析.结果表明,上海夏季中心城区大气中VOCs主要有5个来源,分别为交通工具尾气排放、燃料挥发(液化石油气/天然气泄漏和汽油蒸发)、溶剂使用、工业生产和生物质/生物燃料燃烧+海洋源,其贡献率分别为34%、24%、16%、14%、12%.其中,芳香烃主要来自于溶剂使用、交通工具尾气排放、工业生产和燃料挥发,其分担率分别为35%、26%、22%、17%.烯烃主要来自于交通工具尾气排放和燃料挥发,其分担率为49%和40%.烷烃主要来自于交通工具尾气排放、燃料挥发和溶剂使用,其分担率分别为45%、32%、12%.模拟结果和已知源成分谱符合较好,说明PCA/APCS受体模型源解析结果可信.  相似文献
5.
中国挥发性有机物(VOCs)排放源成分谱研究进展   总被引:11,自引:2,他引:9       下载免费PDF全文
我国VOCs排放来源多、排放成分复杂.排放源成分谱是识别VOCs排放源特征的基本信息,对开展我国大气复合污染研究及制定污染控制策略具有重要意义.本文在介绍排放源成分谱的测量方法和总结我国排放源成分谱测量结果的基础上,阐述了典型排放源VOCs成分谱组分特征.不完全燃烧产物(烯烃和醛酮类)是机动车尾气的重要组分,烯烃在我国油品挥发成分谱中的比例较高,含氧VOCs在溶剂使用源和燃烧排放源中不容忽视,化学组分复杂是工业排放的重要特征.文章还指出了源谱研究的不足之处,主要包括源谱采集与测试方法不规范、测量结果质量难以保证及评价、含氧VOCs组分关注不够、工业排放源成分谱缺失等.从源谱的测量方法、测量组分和数据后处理等方面进行规范化,继续加强机动车排放研究,开展石油化工等工业源谱测量,构建我国本地化VOCs源谱数据库将是今后重要研究工作.  相似文献
6.
轻型汽油车VOCs排放特征和排放因子台架测试研究   总被引:4,自引:0,他引:4       下载免费PDF全文
 为研究轻型汽油车尾气中VOCs的排放特征和排放因子,按照《轻型汽车污染物排放限值及测量方法》(中国Ⅲ、Ⅳ阶段)中要求,采用底盘测功机对国内现有不同品牌轻型汽车进行台架试验,并利用3级冷阱预浓缩GC-MS方法对尾气样品中VOCs物种进行定量分析.结果表明,尾气样品中共有68种VOCs被定量检出,其中芳香烃种类最多,占38.7%,烷烃占29.8%,烯烃(包含炔烃)占27.1%.不同品牌轻型车源排放谱特征基本吻合.轻型汽车的总VOCs排放因子为0.01~0.46g/km,前3位物种分别为乙烯、甲苯和苯.  相似文献
7.
北京市典型溶剂使用企业VOCs排放成分特征   总被引:3,自引:0,他引:3  
通过罐采样-GC-MS/FID采集及分析系统,测定了北京市工业区内典型溶剂使用企业挥发性有机物(VOCs)的排放成分.结果表明:在汽车喷涂企业中,芳香烃(22%~55%)和烷烃(13%~44%)是重要的VOCs排放组分,印刷企业排放的主要组分为烷烃(43%~71%)和含氧VOCs(17%~19%),电子光刻企业排放的特征组分是丙酮(10%~18%),但不同电子光刻企业VOCs其它组分比例相差较大;企业中采用的VOCs处理装置对VOCs排放组成有重要影响;与已有研究的源谱比较,印刷行业源谱较相似,主要以烷烃为主,也有部分芳香烃.汽车喷涂行业的源谱有很大变化,可能是由于汽车涂料成分改变而造成.  相似文献
8.
运城市道路扬尘化学组成特征及来源分析   总被引:2,自引:2,他引:0       下载免费PDF全文
采集运城市区道路扬尘及5类单一尘源类样品(盐湖尘、土壤风沙尘、机动车尾气尘、建筑水泥尘和煤烟尘),测定元素、离子和碳质组分含量并与其他城市比较,在此基础上通过富集因子法和潜在生态风险评价法揭示道路扬尘的化学组成特征,同时运用化学质量平衡模型解析道路扬尘的来源.结果表明,与其他城市相比,Na和SO42-含量高,Si含量相对较低是运城市道路扬尘化学组成的主要特征,Na、SO42-和Si质量分数分别为12.1970%、8.5971%和9.1123%;富集因子计算结果表明道路扬尘中Pb、Cu、Cr、V、As、Ni、Na、Zn等元素的来源明显受到人为活动影响;道路扬尘重金属潜在生态风险为强,工业生产、化石燃料燃烧、机动车排放等人为源是影响道路扬尘生态风险等级的重要因素;煤烟尘、建筑水泥尘和机动车尾气尘的化学成分谱与其他城市相似,土壤风沙尘中Na和SO42-含量相对较高,运城市特有的盐湖尘的主要化学组分是Na、SO42-,含量分别为30.3%、22.7%;化学质量平衡模型解析结果表明,盐湖尘对道路扬尘贡献最大(53%),其次是土壤风沙尘(21%),机动车尾气尘(8%)、建筑水泥尘(7%)和煤烟尘(5%)的贡献几乎相当.  相似文献
9.
PM10可替代源成分谱的建立方法及其应用   总被引:1,自引:1,他引:0       下载免费PDF全文
陈强  景毅  吴焕波  王芳 《环境科学》2014,35(11):4078-4084
对收集到的我国35个城市的PM10有效实测源成分谱进行系统聚类,应用系统聚类和方差分析方法,对源成分谱进行聚类和区域的划分.对聚为一类的各城市源成分谱进行主成分分析,所得主成分得分系数作为权重,加权运算建立可替代源成分谱.利用R、CD以及CMB模型解析所得源贡献值的相对误差,评价所建立的可替代源成分谱的合理性及可行性.得到6种污染源的13个可替代源成分谱,煤烟尘与扬尘各三类,土壤风沙尘、钢铁尘与建筑水泥尘各两类,机动车尾气尘一类.煤烟尘与钢铁尘可以直接进行替代;建筑水泥尘不存在明显区域特征;机动车尾气尘由于数据代表性不足,建议采用实测源成分谱;土壤风沙尘与扬尘的替代标准有待进一步的研究.  相似文献
10.
北京市典型排放源PM2.5成分谱研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了建立和完善北京市PM2.5本地化源谱,对北京市11类排放源PM2.5进行采集,并测定其26种组分,分析了不同排放源源谱的组分特征.结果表明,在有组织排放源中,燃煤电厂PM2.5中OC和Si含量很高,占PM2.5的质量分数分别为8.56%和6.19%(平均值),而供热/工业锅炉排放PM2.5中则是SO42-(占48.38%)和OC(11.0%)比例最高,水泥窑炉PM2.5中OC(7.12%)、Ca(4.81)和Si(4.41%)占有较大比例;垃圾焚烧排放的PM2.5中Si、Ca、K和SO42-均较高,分别占8.15%、9.36%、7.17%和6.79%,且Cl-含量(2.5%)高于其他所有源,生物质燃烧源PM2.5中OC(21.7%)、Si(6.75%)、Ca(6.15%)较为丰富,餐饮源PM2.5中OC(19.44%)、SO42-(5.76%)和K(3.11%)含量均较高;无组织开放源中,道路扬尘和土壤风沙PM2.5化学组分含量变化较为一致,均是Si(分别为16.8%和9.3%)和OC(分别为8.89%和6.61%)最高,建筑水泥尘PM2.5中Ca(17.46%)含量高于其他源;流动排放源PM2.5中OC、EC比例最高,其中,重型柴油车的OC(29.79%)与EC(26.5%)排放比例相当,而轻型汽油车OC排放占有绝对优势(占75%).本文通过对比国内外部分排放源PM2.5成分谱的差异,指出不同区域相同源类排放的PM2.5化学组分差异较大,在应用受体模型中的化学质量平衡模型(CMB)判断受体颗粒物来源时,应基于本地的排放源成分谱,以避免较大的误差.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号