首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  完全免费   64篇
  综合类   154篇
  2018年   2篇
  2017年   15篇
  2016年   18篇
  2015年   14篇
  2014年   33篇
  2013年   10篇
  2012年   17篇
  2011年   12篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
排序方式: 共有154条查询结果,搜索用时 46 毫秒
1.
北京PM2.5浓度的变化特征及其与PM10、TSP的关系   总被引:49,自引:4,他引:45  
在连续2年进行累积1周同步采样的基础上,对北京市城区和居住区2个采样点环境空气中PM2.5的浓度及其时间变化特征进行了分析.PM2.5周平均浓度的变化范围为37~346靏/m3,年均浓度接近或超过PM10的二级年均标准.PM2.5浓度具有明显的季节变化特征,即冬季最高,夏季最低.2个采样点PM2.5浓度的周变化与季节变化均相似.PM2.5与PM10、TSP的比值均在冬季最高,春季最低,反映采暖燃烧源对细颗粒物的贡献较大,而沙尘天气对粗颗粒物的贡献较大;其年均值分别为55%和29%.  相似文献
2.
北京PM2.5浓度的变化特征及其与PM10、TSP的关系   总被引:26,自引:3,他引:23       下载免费PDF全文
 在连续2年进行累积1周同步采样的基础上,对北京市城区和居住区2个采样点环境空气中PM2.5的浓度及其时间变化特征进行了分析.PM2.5周平均浓度的变化范围为37~346靏/m3,年均浓度接近或超过PM10的二级年均标准.PM2.5浓度具有明显的季节变化特征,即冬季最高,夏季最低.2个采样点PM2.5浓度的周变化与季节变化均相似.PM2.5与PM10、TSP的比值均在冬季最高,春季最低,反映采暖燃烧源对细颗粒物的贡献较大,而沙尘天气对粗颗粒物的贡献较大;其年均值分别为55%和29%.  相似文献
3.
广州市空气可吸入性颗粒物化学元素组成特征   总被引:19,自引:2,他引:17  
用安德森双道采样器、Teflon膜采集细颗粒物和粗颗粒物,按时间分布均匀原则选取20个样品,用X-射线荧光光谱法测定其中的元素含量。分析了细,粗颗粒物中与人类活动污染有关的元素和典型的地壳元素的体积分数,与人类活动污染有关的元素质量分数和富集系数。结果表明,广州市市区颗粒物元素污染相当严重,并以细颗粒物中更明显;与人类活动污染有关的元素更易在细颗粒物中富集,并在远离市中心区更明显;市中心区和远离市  相似文献
4.
2004年3月采集甘肃省武威市和内蒙古包头市正常良好天气、局地扬沙天气和沙尘暴天气的大气细颗粒物(PM2.5)样品,以不同浓度的细颗粒物悬液体外处理大鼠肺泡巨噬细胞后测定细胞内丙二醛(MDA)、谷胱甘肽(IgSH)及胞质游离Ca^2 含量,并观察不同处理时间的细胞存活率.研究结果表明:(1)沙尘暴与非沙尘暴PM2.5均使细胞内MDA和Ca^2 含量升高、GSH含量下降,且对细胞毒性存在时间.效应和剂量.效应关系,(2)PM2.5对各指标的影响仅与处理剂量有关,而与样品种类无关.沙尘暴期间大气PM2.5浓度很高,因而沙尘暴PM2.5的危害作用不可忽视。  相似文献
5.
南京北郊大气细颗粒物的粒径分布特征   总被引:16,自引:2,他引:14       下载免费PDF全文
 根据2006 年7~12 月南京北郊大气细颗粒物的观测资料,研究了粒径0.01~2.5µm 颗粒物的浓度变化和粒径分布特征.结果表明,该地区大气细颗粒物数浓度比较高,达104 个/cm3,其中超细粒子(粒径0.01~0.1µm)对总粒子数浓度贡献较大,约占87%.夏、秋、冬季的数浓度谱分布均呈单峰型结构,峰值集中在0.02~0.05µm;大气细颗粒物数浓度在正午太阳辐射最强时达到峰值;降雨对细颗粒物的去除作用明显.夏季的超细粒子浓度最高,可能与高温、高湿的气象条件有关,同时,较强的太阳辐射也使得该季节大气细颗粒物的生成率较高.  相似文献
6.
我国大气颗粒物来源及特征分析   总被引:16,自引:0,他引:16  
我国大气颗粒物来源复杂,呈现大气复合型污染特征,对主要污染源进行识别和定量,是制定城市空气质量改善措施的基础。本研究总结了2000年以来我国近30个城市大气可吸入颗粒物PM10源解析研究,结果表明我国大气颗粒物PM10主要来自六类源:扬尘(土壤尘、道路尘、建筑尘);燃煤;工业排放;机动车排放;生物质燃烧;SO2、NOx、VOCs氧化产生的二次颗粒物。研究还表明,不同地区不同季节大气颗粒物主要来源和相对贡献存在差异。近年来随着大气颗粒物控制措施的实施,城市PM10污染状况已明显改善,大气细颗粒物PM2.5越来越受关注,在制定空气质量达标方案时,各类燃烧源和二次颗粒物的重要性将进一步上升。  相似文献
7.
于2008年7月1~31 日在广州城区每天采集PM2.5和PM1.0样品.利用离子色谱分析了样品中Na+、NH+4、K+、M2+、Ca2+、F-、Cl-、NO-3和SO2-4 等9种离子组分质量浓度,并同步收集气象因子、大气散射系数、大气能见度以及SO2、NO2、O3气体污染物质量浓度等数据.结果表明,PM2.5和PM1.0中水溶性无机离子总浓度分别为(25.5±10.9)μg·m-3和(22.7±10.5)μg·m-3,分别占PM2.5和PM1.0质量浓度的(47.9±4.3)%和(49.3±4.3)%.SO2-4占PM2.5和PM1.0中质量浓度百分比最高,分别为(25.8±4.0)%和(27.5±4.5)%.较高的温度和O3浓度有利于SO2-4的生成,较高相对湿度有利于NO-3的生成.PM2.5和PM1.0中亲水性较强的SO2-4、NH4+和NO-3对散射系数和能见度影响较大.  相似文献
8.
霾天气下南京PM2.5中金属元素污染特征及来源分析   总被引:14,自引:1,他引:13       下载免费PDF全文
 2007年6月13日至2008年5月29日期间,对南京大气中PM2.5进行了连续采样,并利用电感耦合等离子体质谱分析法测定了PM2.5中K、Al、Ca、Pb等30种元素的质量浓度,对比分析了这些元素在霾日与非霾日的污染特征.结果表明,PM2.5污染水平较高,年质量浓度均值达103μg/m3.霾日PM2.5质量浓度水平是非霾日的2.35倍.春季霾日前后PM2.5中元素变化特征不明显,秋冬季节霾日元素浓度基本大于非霾日.平均而言,整个采样期间Cu、Se、Hg、Bi等人为污染元素的富集因子均较高,且霾日明显大于非霾日.因子分析结果表明,南京市霾日PM2.5主要来源于土壤尘、冶金化工尘、化石燃料燃烧、垃圾焚烧及建筑扬尘,贡献率依次为29.21%、20.15%、27.15%、7.09%和5.10%.  相似文献
9.
用同步辐射X荧光光谱分析了上海市郊区大气细颗粒和超细颗粒物(0.028 7~2.40 μm)中元素粒径分布、质量中值粒径、元素相关性和不同粒径颗粒物中的富集因子.Ca、Ti主要分布于粒径>2 μm的颗粒物中,它们之间的相关系数达0.933,富集因子在0.1~3.2之间,且与粒径无明显关联,主要来自土壤扬尘等自然来源.V、Cr、Mn、Ni、Zn、Cu、Pb、Cl、S等元素主要分布在0.1~1.0 μm颗粒物中,质量中值粒径在0.56~0.94 μm之间.V、Cr、Ni、Cu、Zn、Pb显著富集,且富集程度随粒径减小而增大.其中Pb在超细颗粒物(<0.1 μm)中的富集因子达2 023.7~2 244.2,远大于在细颗粒和 PM2.5中的富集程度.这些元素主要来自燃油、燃煤、冶金和机动车尾气等人为污染.Fe在>0.2 μm颗粒物中分布较均匀,质量中值粒径1.3 μm.除了局部污染源,远距离传输对该地区大气颗粒物污染有不可忽略的影响.  相似文献
10.
大气PM2.5是当前我国城市和区域面临的最突出的大气污染问题,然而PM2.5及其关键组分污染的来源不清,严重制约了人们对PM2.5 的科学认知和污染防控的步伐.本研究以2013年1月中国东部地区一次典型重污染过程为研究案例,利用CAMx三维模型中耦合了物种示踪机制的颗粒物来源追踪方法,探讨和揭示了中国东部地区代表性城市上海及周边地区共4个源区(上海、苏南、浙北、大区域)、8类污染源(包括燃烧源、生产工艺过程、流动源、生活面源、挥发源、扬尘源、农业源、天然源)对上海城区大气中PM2.5及其关键组分包括水溶性无机离子(SO2-4、NO-3、NH+4)、元素碳(EC)和有机碳(OC)的污染贡献.研究结果表明,2013年1月份中国东部出现严重灰霾污染期间,上海城区PM2.5的主要区域贡献为上海本地污染源排放累积(PM2.5浓度贡献平均为55.4%±22.3%)和长距离输送(38.4%±20.0%).上海地区8类主要排放源中,扬尘源贡献均值最大,达到30.7%±31.8%,其次为燃烧源18.2%±15.6%、流动源18.6%±17.5%、挥发类源16.9%±18.0%.对上海市PM2.5组分的源解析研究发现,燃烧源对细颗粒物中硫酸盐和硝酸盐的浓度贡献最大,其浓度贡献分别达到56.2%和55.9%.铵盐中72.4%来源于挥发类源贡献,元素碳约78.3%来自于交通源贡献.挥发类源排放和流动源是主要的有机气溶胶贡献源,浓度贡献分别为36.2%和32.5%.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号