首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  完全免费   14篇
  综合类   25篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  1994年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
运城市道路扬尘化学组成特征及来源分析   总被引:10,自引:9,他引:1       下载免费PDF全文
采集运城市区道路扬尘及5类单一尘源类样品(盐湖尘、土壤风沙尘、机动车尾气尘、建筑水泥尘和煤烟尘),测定元素、离子和碳质组分含量并与其他城市比较,在此基础上通过富集因子法和潜在生态风险评价法揭示道路扬尘的化学组成特征,同时运用化学质量平衡模型解析道路扬尘的来源.结果表明,与其他城市相比,Na和SO42-含量高,Si含量相对较低是运城市道路扬尘化学组成的主要特征,Na、SO42-和Si质量分数分别为12.1970%、8.5971%和9.1123%;富集因子计算结果表明道路扬尘中Pb、Cu、Cr、V、As、Ni、Na、Zn等元素的来源明显受到人为活动影响;道路扬尘重金属潜在生态风险为强,工业生产、化石燃料燃烧、机动车排放等人为源是影响道路扬尘生态风险等级的重要因素;煤烟尘、建筑水泥尘和机动车尾气尘的化学成分谱与其他城市相似,土壤风沙尘中Na和SO42-含量相对较高,运城市特有的盐湖尘的主要化学组分是Na、SO42-,含量分别为30.3%、22.7%;化学质量平衡模型解析结果表明,盐湖尘对道路扬尘贡献最大(53%),其次是土壤风沙尘(21%),机动车尾气尘(8%)、建筑水泥尘(7%)和煤烟尘(5%)的贡献几乎相当.  相似文献
2.
对珠江三角洲地区不同等级道路共采集了65个道路扬尘样品,并调研了道路的车流量、车辆构成和道路长度等有关活动水平数据,采用美国环保署推荐的AP-42方法估算了该地区不同等级道路扬尘排放因子和排放量,并分析了道路扬尘排放的时空特征与不确定性范围.结果表明:高速公路、一级、二级、三级和四级道路尘负荷分别为1.05 g·m-2、0.99 g·m-2、1.30 g·m-2、1.35 g·m-2和1.45 g·m-2;不同等级道路扬尘总悬浮颗粒物(Total Suspended Particulate,TSP)、PM10和PM2.5的平均排放因子分别为8.32 g·VKT-1 (Grams per Vehicle Kilometer Traveled)、1.60 g·VKT-1和0.39 g·VKT-1,对应的排放量分别为2755.1×103 t、528.8×103 t和127.9×103 t,其定量不确定性范围分别为-91.7%~175.1%、-91.6%~178.9%及-91.5%~176.5%.  相似文献
3.
车辆限行对道路和施工扬尘排放的影响   总被引:9,自引:1,他引:8       下载免费PDF全文
田刚  李钢  秦建平  樊守彬  黄玉虎  聂磊 《环境科学》2009,30(5):1528-1532
采用降尘法对道路和施工扬尘排放进行连续监测,通过限行之前和限行期间数据分析,研究了“好运北京”体育赛事期间机动车交通限行措施对道路和施工扬尘的消减情况、道路和施工扬尘对北京大气环境颗粒物的贡献率、道路和施工扬尘源占本地颗粒物排放总量的比重.结果表明,车辆限行措施对降低道路和施工扬尘的效果明显;环路限行期间降尘量平均值为0.27 g·(m2·d)-1,限行之前1个月和限行之前7d降尘量平均值为0.81和0.59 g·(m2·d)-1,主干道和次干道限行期间降尘量平均值为0.21 g·(m2·d)-1,限行之前1个月和限行之前7 d降尘量平均值为0.54和0.58 g·(m2·d)-1,道路降尘量下降了60%~70%;限行期间民用建筑施工降尘量平均值为0.27 g·(m2·d)-1,限行之前20 d为1.15 g·(m2·d)-1,限行期间公用建筑施工降尘量平均值为1.06 g·(m2·d)-1,限行之前20 d为1.55 g·(m2·d)-1,施工降尘下降30%~47%;道路和施工扬尘是北京市颗粒物污染的主要来源,其对环境PM10的贡献率为21%~36%;当本地污染源PM10排放量占环境总量的50%和70%时,道路和施工扬尘PM10排放量分别占本地污染源的42%~72%和30%~51%.  相似文献
4.
机动车行驶过程道路扬尘影响因素试验研究   总被引:5,自引:0,他引:5  
机动车行驶过程道路扬尘是城区颗粒物污染的主要因素,其贡献率可达30%-50%。城市路面积尘是机动车行驶过程道路扬尘的主要尘源。路面尘受机动车车轮积压作用、机车行驶过程诱导气流、热射流等综合尘化作用的影响,再次扬向空中并扩散,造成空气中颗粒污染物TSP、PM10浓度增高。实验模拟单车行驶,研究道路粉尘负荷、车速、排放源距离对总悬浮颗粒物(TSP)、可吸入颗粒物(PM10)浓度的影响,结果显示:TSP、PM10浓度与机动车行驶速度呈显著正相关;同一车速下与路面粉尘负荷呈对数变化规律;与排放源距离呈负相关。  相似文献
5.
济南市道路扬尘排放因子估算及其影响因素研究   总被引:5,自引:0,他引:5  
以济南城市道路为研究对象,采用美国环保署AP-42模型和方法,通过道路分类、优化布点、样品采集、实地观测和计算分析,获得道路粉尘负荷及四种类型道路扬尘的排放因子,探讨了排放因子的主要影响因素。结果表明,路面粉尘负荷随车流量增大而逐渐降低,城市城区路面粉尘负荷多小于城市外围路面,且外围道路路面粉尘负荷随时间和空间变化大;支路和次干道排放因子相对较小,快速路排放因子较高,主干道排放因子最高,其TSP、PM10、PM2.5排放因子分别高达25.239 3 g/VKT、4.731 1 g/VKT、0.597 2 g/VKT;排放因子随平均车重增加呈现逐渐增大趋势;同种类型道路排放因子均随道路粉尘负荷的增加而增加;次干道和快速路排放因子随车流量增大而减小。所获结论可为城市道路扬尘排放估算提供参考。  相似文献
6.
道路扬尘评估方法的建立和比较   总被引:2,自引:0,他引:2  
建立了降尘法和AP-42法2种道路扬尘评估方法,它们分别以减去背景降尘的道路自身降尘(ΔDFr)和道路扬尘排放强度(EIr)作为评估指标.通过对这2种方法评估结果的比较与分析发现:①ΔDFr和EIr有很好的正相关关系,相关系数(R2)为0.708;②ΔDFr能同时反映车辆激发扬尘和路面风蚀扬尘,而EIr只反映车辆激发扬尘;③积尘负荷大小不代表评估道路扬尘污染程度,但适用于定量评价道路清扫保洁质量.降尘法相比AP-42法,其实施安全、简单易行、误差小,但不能满足快速评估要求,而且评估成本略高.2种评估方法均表明《奥运保障措施》控制道路扬尘的效果明显,2008年北京奥运会期间与2007年同期相比,快速路、主干路、次干路和支路ΔDFr分别下降了65%,55%,65%和84%.  相似文献
7.
机动车辆入城前冲洗与道路扬尘的监测分析   总被引:1,自引:0,他引:1  
对机动车辆入城前冲洗前后携带车尘量及粒径进行了监测分析。监测结果,冲洗后,清除了60%-70%的车尘,道路扬尘降低40%左右。根据实测资料分析了交通车流量和风速对道路扬尘浓度的影响。结果表明,建立机动车辆入城冲洗站,对机动车辆入城前进行冲洗,环境效益和经济效益显著。  相似文献
8.
道路环境颗粒物浓度空间分布研究   总被引:1,自引:0,他引:1  
由于交通扬尘和车辆尾气排放,道路环境颗粒物浓度高于城市其它区域,文章应用一种移动监测技术测试区域道路环境中PM10浓度空间分布,并进行了呼市城区道路环境PM10空间分布分析;采用降尘法对呼市城区不同区域30条道路进行监测,分析道路降尘空间分布规律,并对两种方法进行比较。文章给出了呼市城区道路环境PM10浓度的空间分布图和不同区域道路降尘分布图,直观显示出PM10浓度空间分布情况,突出了污染的重点区域。道路环境PM10浓度主要分布在0.02~1.00 mg/m3之间,降尘量在10~85(t/km.230 d)之间。道路环境PM10浓度空间分布于道路降尘空间分布总体趋势一致,并分析了道路环境颗粒物浓度差异的原因,高浓度区域主要是由于施工活动密集、路面破损和路面两侧存在裸土。空间浓度分布为道路扬尘控制措施的科学安排和控制效果评估提供技术支持。  相似文献
9.
北京市典型道路扬尘化学组分特征及年际变化   总被引:1,自引:1,他引:0       下载免费PDF全文
胡月琪  李萌  颜旭  张超 《环境科学》2019,40(4):1645-1655
选择北京市具有代表性道路,于2004年9月和2013年5月进行采样,利用再悬浮设备制备道路扬尘PM10与PM2.5样品,并进行化学组分分析,建立了2004年和2013年北京市道路扬尘PM10与PM2.5源成分谱,以分析和探讨北京市道路扬尘化学组分特征及其组分年际变化.结果表明,北京市道路扬尘PM10与PM2.5源成分谱中的化学组分特征均为Ca、Si、有机碳(organic carbon,OC)、Al、Fe、K、Mg、SO42-和元素碳(element carbon,EC),其在道路扬尘中的含量之和分别为:2004年PM10为46.7303%、PM2.5为56.9198%和2013年PM2.5为38.7478%;占全部被测组分的比例分别为95.9%、94.3%和94.7%.2004年道路扬尘中,环路Si、Al的含量显著低于其他道路类型,受到的土壤风沙尘影响最小;建筑水泥尘特征元素Ca主干道含量最高,高速五环进京口含量最低;EC在高速五环进京口的含量显著高于其他道路类型.而2013年PM2.5中被测组分总含量及Si、Al、Ca的含量次干道均显著低于其他道路类型.2013年与2004年相比,北京市道路扬尘PM2.5中除SO42-含量略上升了2.0%外,其余组分含量下降显著,Ca、Si、OC、Al、Fe、K、EC和NO3-下降幅度分别为45.1%、31.5%、17.5%、20.3%、55.6%、33.3%、30.0%和50.3%.结果表明,[NO3-]/[SO42-]比值不能准确反映固定源和移动源相对贡献大小的变化.[OC]/[EC]比值,2004年PM10为9.77±3.88,PM2.5为9.36±3.25,2013年PM2.5为14.41±10.41,北京市道路扬尘存在二次有机碳(secondary organic carbon,SOC),且SOC是道路扬尘PM10与PM2.5的重要组成部分.不同城市道路扬尘及同一城市不同粒径的道路扬尘成分谱相似度不高,应建立相应的成分谱并适时更新.  相似文献
10.
张伟  姬亚芹  张军  张蕾  王伟  王士宝 《环境科学》2017,38(12):4951-4957
为了解辽宁省典型城市道路扬尘PM2.5中水溶性无机离子组分特征及其来源,分别于2014年和2016年采集了鞍山市和盘锦市道路扬尘样品,利用再悬浮采样器将其悬浮到滤膜上,用离子色谱仪分析了其中的水溶性无机离子组分,分别用相关分析法和比值法分析了其污染特征,用主成分法初步解析了其主要污染源.结果表明,盘锦市和鞍山市8种水溶性无机离子分别占道路扬尘PM2.5的5.83%±3.34%和5.84%±1.15%.盘锦市NH4+与SO42-和NO3-的结合方式主要为(NH42SO4和NH4NO3,鞍山市NH4+与SO42-和NO3-的主要结合方式为NH4HSO4和NH4NO3.盘锦市和鞍山市道路扬尘PM2.5中NO3-/SO42-的均值分别为0.52±0.55和0.46±0.13,表明固定源(燃煤)对其道路扬尘PM2.5的影响较显著.盘锦市道路扬尘PM2.5主要来源于生物质燃烧源、海盐粒子、建筑水泥尘和机动车尾气;鞍山市道路扬尘PM2.5主要来源于燃煤源、生物质燃烧源、海盐粒子和钢铁冶炼尘.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号