首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   56篇
  国内免费   175篇
安全科学   36篇
废物处理   13篇
环保管理   29篇
综合类   327篇
基础理论   171篇
污染及防治   46篇
评价与监测   24篇
灾害及防治   6篇
  2024年   2篇
  2023年   16篇
  2022年   27篇
  2021年   23篇
  2020年   24篇
  2019年   27篇
  2018年   17篇
  2017年   24篇
  2016年   23篇
  2015年   22篇
  2014年   43篇
  2013年   28篇
  2012年   30篇
  2011年   41篇
  2010年   22篇
  2009年   28篇
  2008年   27篇
  2007年   36篇
  2006年   42篇
  2005年   28篇
  2004年   17篇
  2003年   21篇
  2002年   12篇
  2001年   17篇
  2000年   11篇
  1999年   11篇
  1998年   1篇
  1997年   3篇
  1996年   7篇
  1995年   9篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1989年   1篇
排序方式: 共有652条查询结果,搜索用时 187 毫秒
1.
为探究酰胺酶降解阴离子型聚丙烯酰胺(HPAM)的微观机理,采用分子对接分别模拟了阴离子型聚丙烯酰胺(HPAM)或聚丙烯酸酯(PAA)结构模型与Rhodococcus sp. N-771酰胺酶(Rh Amidase)的结合,根据-CDOCKER_Energy score值最高的原则,对获得最佳结合构象进行分析.基于亲和力虚拟突变进行丙氨酸(ALA)扫描.亲和力分析表明,Rh Amidase对HPAM-2的亲和力最高、最稳定,而Rh Amidase于PAA-2相互作用最小、结合最好.同时,该酶更倾向于降解短链的聚合物.相互作用分析表明,疏水相互作用是Rh Amidase-HPAM-2比Rh Amidase-PAA-2更稳定的主要原因.通过ALA扫描进一步得知,PHE146、ILE450、LYS96和GLY193是Rh Amidase降解HPAM-2的关键氨基酸残基.其中GLY193与HPAM-2形成的1个氢键对Rh Amidase-HPAM-2的亲和力影响最大.突变体ASP191ALA可以提高Rh Amidase对HPAM-2的酶活性,这些数据可为设计更高活性的Rh Amidase突变体提...  相似文献   
2.
以水杨酸为模板分子制备了分子印迹纳米TiO_2材料,对分子印迹前后的纳米材料降解水杨酸的催化活性进行测定,并用SEM,BET和UV-Vis等对其微观结构及形貌特征进行表征。由实验结果分析可得,分子印迹改性对纳米TiO_2粉体的催化性能有显著影响。分子印迹TiO_2紫外光下催化降解水杨酸溶液,180 min脱色率达到97%以上。在苯甲酸、水杨酸混合液中进行光催化降解,分子印迹TiO_2优先降解水杨酸,选择因子达到2.37。因而分子印迹改性有效地改善了TiO_2的催化效率和降解的选择性。  相似文献   
3.
以三聚氯氰和5-氨基间苯二甲酸为原料,通过亲核取代制备了一种新型耐盐两性离子超分子水凝胶(ZSH)2,4,6-三(3,5-二羧基苯基氨基)-1,3,5-三嗪。运用FTIR、NMR、MS和SEM技术对ZSH进行了表征,并将其用于对阴离子染料活性艳红(K-2BP)和阳离子红(X-GTL)的吸附去除。基于ZSH的pH响应性和耐盐性,在高盐染料废水中利用ZSH的原位溶胶-凝胶转变,可在其与阴/阳离子染料接触的瞬间完成吸附。当吸附pH为0.86、ZSH与K-2BP的质量比为5∶2时,K-2BP的去除率可达89.6%,饱和吸附量为459.2 mg/g;当吸附pH为1.00、ZSH与X-GTL的质量比为2∶1时,X-GTL的去除率可达91.8%,饱和吸附量为427.6 mg/g。ZSH吸附K-2BP和X-GTL的过程更符合Freundlich等温吸附模型。  相似文献   
4.
制备了分子印迹硅纳米-氧化石墨烯复合吸附材料,并研究了复合材料对双酚A(Bisphenol A,BPA)的吸附性能。实验结果表明:复合吸附材料对BPA的吸附在35min内达到吸附平衡,Langmuir等温线模型得出最大吸附容量约为338.3mg/g;相对于BPA的结构类似物,对BPA具有良好的选择吸附性能;在溶液p H接近6时对BPA的去除率最高,低温条件有利于吸附的进行;该材料具有优异的循环吸附性能。  相似文献   
5.
合成了β-环糊精(β-CD)与偶氮染料酸性红GR(ARGR)的包结物,并采用红外光谱仪对ARGR、β-CD及β-CD与ARGR的包结物进行了表征,表征结果显示,β-CD与ARGR的包结物的特征峰的峰形和强度与β-CD相似,但峰位有明显的偏移,说明ARGR进入了β-CD空腔与β-CD发生了分子识别作用。采用TiO2作为催化剂,研究了β-CD分子识别后ARGR的光催化降解行为,实验结果表明,在ARGR质量浓度为20.0 mg/L、β-CD浓度为1.8×10-5 mol/L、体系pH为4.0、TiO2加入量为1.0 g/L、光催化反应时间为60 min的条件下,经β-CD分子识别后ARGR的光催化降解率可达100%。  相似文献   
6.
2020年5—9月,共采集南昌前湖区域20个降水事件的88个分段降水样品,测定降水中3种低分子有机酸(甲酸、乙酸、草酸)和4种无机阴离子(Cl-、NO2-、NO3-、SO42-)浓度,分析讨论降水有机酸的分布、来源,定量解析云下冲刷、云水对降水有机酸的贡献.结果表明,降水中甲酸、乙酸、草酸占所测定阴离子总量的16%,降水有机酸与无机酸总量的月变化呈相反趋势;长降水事件的降水有机酸浓度在降水进程中呈现先逐渐降低,到降雨末期趋于平稳或稍稍反升的变化特征;降水进程中,云下冲刷对降水中3种有机酸的贡献率逐渐减小,而云水对其贡献率逐渐增大,降雨前期,云下冲刷为降水中有机酸根的主要来源,降雨后期,以云水贡献为主;前期降水中3种有机酸两两之间的相关性比末期降水中的弱,降水中草酸与SO42-的相关性较甲、乙酸与SO42-的相关性强,反映降水中草酸受二次污染影响大;...  相似文献   
7.
研究了CCTS对低浓度游离酸的吸附特性,基于吸附质-分子探针电位法,考察了吸附剂活性中心数目、游离酸种类和温度对吸附行为的影响。结果表明,在30℃时,CCTS吸附游离酸的过程,遵循单分子层机理进行吸附。吸附剂―吸附质相互作用能U制约表观吸附速率常数K,K、U大小分别为2.519×10-2,4.084×10-2,9.398×10-2L/min和7.264,7.420,7.926 kJ/mol,两者存在线性相关性,呈逐渐增大趋势。K、U大小随着活性中心数目G的增加而增大。CCTS吸附游离酸为吸热过程,吸附表观活化能Ea为33.98 kJ/mol。3种类型游离酸K、U的大小顺序为:HClO4>HNO3>H2SO4,吸附分维数Dw分别为1.384、1.567、1.911,Dw值越大,导致表观吸附速率常数降低。  相似文献   
8.
水中氨氮含量是反应水质状况的重要指标。文章对测定水中氨氮气相分子吸收光谱法(标准号HJ/T195-2005)进行了改进试验研究。第一,对氧化剂的配比进行了改进,使氨氮的测定范围扩展至100μg。第二,对标准HJ/T195-2005中直接使用亚硝酸钠标准溶液做标准曲线的处理方式也做了探讨。通过一系列对比实验认为,应用硫酸铵标准溶液做工作曲线更加准确合理。最后应用改进后的气相分子吸收光谱法和纳氏比色法或滴定法对多种实际废水样品进行同时测定。结果表明,改进后的气相分子吸收光谱法测定氨氮的范围更宽,灵敏度更高和准确度更好。  相似文献   
9.
基于从分子尺度上解析改性剂烷基碳原子数和有机物疏水性对有机粘土吸附能力的影响机制,以从头算的量子化学计算方法(MP2/6-31g(d))模拟了有机粘土在水溶液中的吸附过程.通过计算吸附前后几何构型、能量、化学键和电荷分布等参数的变化,分析了影响有机粘土疏水性吸附的关键因素,并对疏水性吸附作用力的化学本质进行了初步探讨.计算结果表明,烷基碳原子数增加对提高有机物吸附能的作用并不显著,长链烷基提高有机粘土吸附容量的真正原因在于其可提供更多的有机物吸附位.有机物的疏水性(以正辛醇-水分配系数logKow表征)是影响疏水性吸附过程的关键因子,水分子的引力作用对疏水性吸附具有决定性影响,理论上解释了普遍存在的有机物吸附量与logKow呈正相关的实验现象.疏水性吸附力的作用前提是有机物为疏水性,即当水分子的引力作用较弱时疏水性作用力才可以表现出来;而对于亲水性有机物,疏水性吸附力会被水分子的引力所抵消,吸附强度减弱.模拟红外光谱和电荷分布结果表明,吸附前后无化学键断裂和电子得失的发生,只有原子电荷密度的微小变化,据此推测疏水性吸附力以分子间弱相互作用力——London色散力为主.  相似文献   
10.
采用连续流动分析仪,用连续流动分光光度法,对水体中的氨氮进行实验研究。优化了试验方法,使氨氮的标准曲线线性相关性高,操作简便,大大提高了检测的效率,缩短了样品测量时间。样品中的测量值均在国家标准之内,测量的精度高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号