首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   14篇
  国内免费   9篇
安全科学   1篇
综合类   34篇
基础理论   6篇
污染及防治   1篇
评价与监测   1篇
  2022年   4篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
对2005年北京大气中异戊二烯进行了一年的观测分析。结果表明,异戊二烯体积分数年平均值为0.58×10-9,月平均值为0.1×10-9~1.8×10-9,7月最高,1月最低。春、秋、冬三季,异戊二烯日变化形式呈三峰形,分别在14:00、18:00、02:00;18:00、02:00、08:00;02:00、10:00、16:00出现峰值;夏季异戊二烯体积分数日变化呈现白天高夜晚低且在14:00出现峰值。夏季异戊二烯源排放主要由生物排放控制,其日变化形式受温度、辐射影响大;春季和秋季异戊二烯源排放受汽车尾气和生物排放共同控制,其日变化形式受汽车尾气影响大,温度、辐射也有一定影响;冬季异戊二烯源排放主要由汽车尾气控制,其日变化形式主要受汽车尾气影响。不同季节北京大气中的异戊二烯体积分数日变化形式与PM2.5浓度日变化形式大致相同。  相似文献   
2.
采用全球气候模式Nor ESM1-M产生的RCP2.6、RCP4.5、RCP6.0和RCP8.5气候变化情景数据和植物异戊二烯排放计算模型,模拟分析了未来气候变化对武夷山自然保护区毛竹(Phyllostachys pubescens)异戊二烯排放速率的影响.结果显示,气候变化下武夷山自然保护区气温上升,年降水量和辐射强度波动较大,呈增加或下降趋势.毛竹异戊二烯平均日排放速率在未来气候变化情景下比基准情景下高约30μg·g~(-1)·d~(-1),在RCP8.5情景下比基准情景下高约48μg·g~(-1)·d~(-1);毛竹异戊二烯日排放速率在未来气候变化情景与基准情景下的差异在1~90 d和301~365 d较小,在91~300 d差异较大;相比基准情景,未来气候变化情景下毛竹异戊二烯日排放速率在1~190 d(平均增加15%以上)和271~365 d(平均增加20%)增幅较大,在191~270 d增幅较小,在RCP8.5情景下增幅最大(平均增加17%).另外,毛竹异戊二烯年排放速率在未来气候变化情景下比基准情景下约高10000μg·g~(-1)·a~(-1)以上,在RCP8.5情景下比基准情景下约高13%.研究表明,未来气候变化将使毛竹异戊二烯排放速率增加.  相似文献   
3.
利用吹扫捕集-气质联用方法测定了2014年5月黄海、渤海所取海水样品中异戊二烯的含量,探讨了其分布特征、海-气通量及影响因素.研究结果表明:春季黄海、渤海海域表层海水中异戊二烯的浓度范围为6.02~32.91pmol/L,(平均值±标准偏差)为(15.39±4.98)pmol/L,在黄海中部海域出现浓度高值;表层海水中异戊二烯与叶绿素a(Chl-a)浓度有一定的正相关性(R2=0.2529,n=49,P < 0.001),说明浮游植物生物量在异戊二烯生产和分布中发挥重要作用;春季黄海、渤海异戊二烯海-气通量的变化范围为0.78~192.43nmol/(m2·d),(平均值±标准偏差)为(24.08±30.11)nmol/(m2·d),表明我国陆架海区是大气异戊二烯重要的源.  相似文献   
4.
2011年夏季8月,在西安交通大学主楼顶(距离地面约100 m)运用MOUDI采样器采集了5套不同粒径大气气溶胶样品,经TMS硅烷化后运用GC/MS定量分析了生物二次有机气溶胶(BSOA)异戊二烯氧化产物(2-甲基丁四醇, C5-烯三醇和2-甲基甘油酸)、单蒎烯类氧化产物(顺蒎酸,蒎酮酸,3-羟基戊二酸和3-甲基-1,2,3-丁三酸)以及倍半萜烯氧化产物(倍半萜烯酸)浓度。结果显示:西安城区大气BSOA中主要以异戊二烯类为主,其次是单萜烯和倍半萜烯类BSOA,其氧化所产生的生物二次有机碳(BSOC)浓度分别为0.39 μgC·m-3,0.13 μgC·m-3和0.10 μgC·m-3。粒径分布研究表明:BSOA主要富集在细颗粒物上。MBTCA/CPA特征比值表明:采样期间西安城区BSOA主要来自本地源,老化程度较低。  相似文献   
5.
北京地区植物VOCs排放速率的测定   总被引:16,自引:8,他引:16  
植物释放的挥发性有机化合物(VOCs)主要集中在异戊二烯和单萜烯上,这些种类的化合物占生物圈VOCs释放量2/3.采用封闭式采样和气相色谱分析对北京地区23种典型植物异戊二烯和单萜烯排放速率进行测定和研究,发现阔叶树(如槐,垂柳等)主要释放异戊二烯;而针叶树(如油松)和果树主要释放单萜烯.同时发现植物异戊二烯的释放受光照和温度的影响,而单萜烯的释放则主要受温度的影响.  相似文献   
6.
多云天气异戊二烯排放通量的计算   总被引:2,自引:1,他引:2  
根据2002和2003年夏季内蒙古草原的实测资料,发现多云天气下,云通过可见光辐射对异戊二烯排放带来明显影响.研究和提高云量较大条件下异戊二烯排放通量计算的准确性是非常必要和重要的,它将有助于全面了解和准确估算不同天气、所有时段异戊二烯的排放通量.研究表明,对于云量≥6的时段,可以将经验公式中的大气质量(m)取为1,并使用原计算系数来计算异戊二烯的排放通量,其计算值与观测值相对偏差的平均值可降为72%,该方法可以明显降低多云天气下排放通量计算值的不确定性.  相似文献   
7.
我国植物VOCs排放速率的研究   总被引:17,自引:2,他引:17  
 1992~2000年,使用流动式、封闭式采样法,气相色谱-火焰离子化检测器,测定了我国4 种气候类型(温带-寒温带,温带,温带-亚热带,热带-亚热带),7 个地区(黑龙江,北京,福建,广东,四川,湖南,云南),共 58 种当地优势树种、庄稼和草地异戊二烯和单萜烯的排放速率.使用G93 算法,换算出相应异戊二烯和单萜烯的标准排放因子,并划分了这些排放因子的等级.同种树种在不同的气候带和季节的排放有明显的差异,通常,VOCs 排放速率南方高于北方,夏季高于冬季;阔叶树主要排放异戊二烯,针叶树主要排放单萜烯,但是我国南方相当数量的阔叶林的排放特征不符合上述规律.  相似文献   
8.
内蒙古草原挥发性有机物排放通量的研究   总被引:8,自引:0,他引:8  
2002年夏季,利用静态箱方法,对我国内蒙古草原生态系统挥发性有机物的排放进行了首次测量,同时观测了太阳辐射、温湿度等参数.结果表明,异戊二烯是草地挥发性有机物排放中的主要成分.异戊二烯的排放有明显的日变化、逐日变化和季节变化规律.因子分析表明,可见光辐射、温度、水汽含量是影响异戊二烯排放的主要因子,而且可见光辐射是控制其排放过程的最主要因子.根据相关分析,在考虑影响异戊二烯的排放因子时,不仅要考虑通常的影响因子--可见光辐射、温度,还要考虑水汽的作用.箱方法的使用不可避免地造成箱内外太阳辐射、温湿度等的差别,因此,必须考虑修正采样箱对挥发性有机物排放通量带来的影响.2002年夏季,异戊二烯排放通量(C)的最大值为1649.3μg/(m2·h).6、8、9月采样期间异戊二烯排放通量的日平均值分别为886.6、707.0、427.2μg/(m2·h).  相似文献   
9.
杨树排放碳氢化合物的相关因素   总被引:7,自引:1,他引:7  
白郁华  李金龙 《环境化学》1995,14(2):118-123
采用封闭式气袋采样和气相色谱法,对杨树排放碳氢化合物(HCs)的情况进行了调查,结果发现,与油松排放情况不同,杨树主要排放异戊二烯,约占其HCs排放总量的95%以上,且与温度,光强正相关,排放的日变化表明,杨树在正午有一排放高峰,夜间基本不排放,在春季和夏季日均气温分别为19.2℃和28.8℃,杨树的异戊二烯平均总排放速率分别为4.4和39.8μg/g.h。  相似文献   
10.
气象模拟误差对异戊二烯排放估算的影响   总被引:3,自引:3,他引:0       下载免费PDF全文
利用MEGAN模式估算了珠三角地区2006年异戊二烯的排放情况,并设计了两组敏感性实验深入探讨了气象模拟误差对异戊二烯排放的影响.估算结果显示,2006年珠三角地区异戊二烯的排放量为95.56×106kg(以C计),且主要分布在珠三角地区周边植被覆盖较高的地方;受气象条件季节变化的影响,异戊二烯的排放表现出显著的季节和日变化特征,最大异戊二烯排放通量季节出现在夏季,为0.920t·km-2(以C计),最大排放速率均出现在13:00.敏感性实验结果显示,气象模拟误差能显著影响异戊二烯的排放,升高(降低)太阳辐射的输入,异戊二烯的排放量增加(减小)36.20%~50.70%(30.73%~41.88%),大于温度改变引起的排放量变化;升高(降低)气象输入并不会改变异戊二烯排放的日变化特征,但能显著影响排放速率的大小.上午8:00或下午17:00,异戊二烯排放速率的改变最为明显.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号