首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   897篇
  免费   115篇
  国内免费   380篇
安全科学   158篇
废物处理   35篇
环保管理   69篇
综合类   795篇
基础理论   91篇
污染及防治   175篇
评价与监测   17篇
社会与环境   18篇
灾害及防治   34篇
  2024年   2篇
  2023年   48篇
  2022年   66篇
  2021年   56篇
  2020年   64篇
  2019年   63篇
  2018年   47篇
  2017年   45篇
  2016年   44篇
  2015年   42篇
  2014年   101篇
  2013年   58篇
  2012年   75篇
  2011年   71篇
  2010年   60篇
  2009年   60篇
  2008年   73篇
  2007年   76篇
  2006年   46篇
  2005年   49篇
  2004年   52篇
  2003年   28篇
  2002年   27篇
  2001年   25篇
  2000年   20篇
  1999年   15篇
  1998年   6篇
  1997年   6篇
  1996年   11篇
  1995年   14篇
  1994年   4篇
  1993年   10篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
排序方式: 共有1392条查询结果,搜索用时 31 毫秒
1.
厌氧发酵是农业废弃物资源化的有效途径之一.将农业废弃物同其他富含氮元素的有机废物混合发酵能够有效地提高产气效率.以玉米秸秆为例,尝试利用藻渣作为添加剂,提高农业废弃物厌氧发酵的性能.实验主要研究了混合发酵比例对沼气产量、甲烷产量、沼渣沼液特征的影响.当玉米秸秆、藻渣和接种污泥的挥发性固体质量分数为10∶ 2∶2时,沼气产率最高可达421.0 mL/g,甲烷产率为218.7 mL/g.沼渣组分分析表明,纤维素和半纤维素降解效率分别为83.7%和68.4%,和对照相比纤维素的降解效率显著提高.结果表明,藻渣的添加能够有效地促进玉米秸秆厌氧发酵产甲烷过程.  相似文献   
2.
高黏度污泥螺带螺杆搅拌混合特性的数值模拟   总被引:1,自引:0,他引:1  
污泥处理过程通常需要加入添加剂,而高黏度污泥流动性差,搅拌混合是一个难点。选用螺带螺杆搅拌器加添加剂搅拌高黏度污泥,用Solid Works软件几何建模后,将模型导入Gambit划分网格,结合Fluent软件选用多重参考系法(MRF)分别对双螺带螺杆搅拌器与单螺带螺杆搅拌器下的污泥与添加剂混合过程进行了模拟,对比了两种搅拌桨的混合时间、体积分数流场分布及混合效率,分析了不同加料区域的影响,并将搅拌功率模拟与试验结果进行了对比。结果表明:螺带螺杆搅拌器适用于高黏度污泥的搅拌且双螺带螺杆搅拌器混合时间更短,体积分数流场更快趋于稳定且混合效率更高;最佳加料区域为搅拌槽的中部。  相似文献   
3.
抗生素是环境中普遍存在的污染物,畜牧水产养殖是其主要来源之一.环境中可能同时存在多种抗生素残留,因此单一药物的毒性评价难以反映抗生素对生态环境的影响,应探究其混合物的毒性效应.本文在总结大量文献的基础上,介绍了兽用抗生素的残留现状,总结了兽用抗生素对生态环境的混合毒性研究进展,讨论了兽用抗生素残留对土壤生物和水生生物的生态毒性效应,最后对兽用抗生素的环境混合毒性研究进行了展望.  相似文献   
4.
采用混合生命周期评价法,全面考虑页岩气开发钻井、固井、水力压裂、放喷测试求产和生产阶段的温室气体(Greenhouse Gas, GHG)排放量。结果表明:涪陵页岩气开发生命周期GHG排放量为12.27 gCO_2e/MJ,主要来自生产阶段的GHG排放。页岩气燃烧供能、甲烷泄漏(生产阶段)、柴油生产造成的GHG排放量较大,分别占总GHG的87.096 2%,4.930 4%,2.344 4%。通过对比研究发现,页岩气储层所处地域不同,采用的开发技术也不尽相同,GHG排放量存在较大差异。单井产能是对页岩气生命周期GHG排放量影响最大的因素。  相似文献   
5.
为实现高氯酸盐还原颗粒污泥的快速培养,以反硝化颗粒污泥为接种污泥,对高氯酸盐还原颗粒污泥的快速培养进行了研究。在降低进水硝酸盐(NO_3~-)浓度的同时,采用逐步升高进水高氯酸盐(ClO_4~-)浓度的方法,考察了高氯酸盐还原颗粒污泥培养过程中ClO_4~-的去除以及颗粒污泥的特性。结果表明:以反硝化颗粒污泥为接种污泥,经过50 d快速培养出高氯酸盐还原颗粒污泥,ClO_4~-去除速率达96%以上;其混合液悬浮固体浓度(MLSS)为50.68 g·L~(-1),混合液挥发性固体浓度(MLVSS)为40.58 g·L~(-1),主要粒径分布在0.60 mm和1.00~2.00 mm。NO_3~-浓度逐步降低的培养方式可缓解ClO_4~-对颗粒污泥中各类微生物的毒性,为高氯酸盐颗粒污泥的快速培养提供了新的方法,具有重要的理论和实践意义。  相似文献   
6.
黄慧 《环境与发展》2020,(1):201-201,203
目前,是以提倡低碳环保、绿色生态城市为发展规划的社会,生态化建设正如火如荼地进行中。本文以中新天津生态城、曹妃甸唐山湾生态城、青岛中德生态园这三个地点作比较,以建设绿色生态城市规划协同、共生城市理念、混合开发和生态社区结构这几点进行了分析,总结了城区建设间的问题,并针对这些问题研究解决方案,以达到绿色生态区建设的目的。  相似文献   
7.
为探究石油烃降解菌群对高浓度含油废水中不同组分烃的生物降解特性,向含油水相中接种石油烃降解菌群LW-10(Accession number:SRR15082184)进行降解实验.利用GC-MS研究了LW-10对原油中不同组分烃的降解性能,采用流式细胞术检测降解体系中的菌量变化.利用qPCR技术对控制不同组分烃降解的关键基因进行检测.结果表明,原油浓度为5000 mg·L-1的含油废水中接种LW-10降解17 d,对原油中烷烃和多环芳烃组分的降解率分别为96.7%和28.4%.体系中的降解菌总浓度与高活性菌浓度由接种时的1.0×108 cfu·mL-1增加至2.1×109 cfu·mL-1和8.3×108 cfu·mL-1.检测的3种石油烃降解功能基因中,烷烃单加氧酶基因alkB2拷贝数由1.06×108 copy·mL-1变为2.84×108copy·mL-1...  相似文献   
8.
用溶胶-凝胶法并通过控制煅烧温度合成不同晶相比的混合晶型纳米TiO_2,在紫外光光照下降解气相苯。考察了苯初始质量浓度、紫外灯光照强度和催化剂加入量对苯去除率的影响;探究了光催化降解气相苯的动力学特征。结果表明:450℃煅烧制备的催化剂降解苯效率最高,此催化剂金红石相质量分数为6.30%;在苯初始质量浓度为74.39 mg/m~3、催化剂加入量为7 g、光照强度为2.18 klux的最佳条件下反应84 min,苯去除率达99.73%;光催化降解率与光照强度之间符合0.5级动力学特征;当催化剂加入量为3 g时,单位时间单位质量催化剂降解苯的质量最多;苯的光催化降解反应均符合一级动力学方程。  相似文献   
9.
进水底物浓度对蔗糖废水产酸合成PHA影响研究   总被引:2,自引:1,他引:1  
陈志强  邓毅  黄龙  温沁雪  郭子瑞 《环境科学》2013,34(6):2295-2301
混合菌群合成生物可降解塑料(PHA)成为目前研究的热点,三段式PHA合成工艺(水解产酸、产PHA菌富集、PHA合成)被广泛应用.在三段式工艺中,产PHA菌的富集非常关键,只有稳定产生PHA菌才能保障PHA合成的产量.针对产PHA菌富集系统容易出现污泥膨胀的问题,本研究考察了进水底物浓度对产PHA菌富集效率及运行稳定性的影响.在560mg·L-1、1 120 mg·L-1、1 680 mg·L-1这3组不同进水底物浓度的对比实验中,证实了COD 1 120 mg·L-1条件下富集反应器能够在较短污泥龄下稳定富集具有较高污泥浓度的高效产PHA菌,且不会发生污泥膨胀.在94 d的富集期后其批次实验最大PHA含量、PHA转化率(COD/COD)及PHA比合成速率能分别达到50%、0.714 5及0.191 2 mg·(mg·h)-1.研究还同时证实细胞内糖原水平高低与其PHA合成能力密切相关,可采用其作为富集效果的重要检测指标之一.  相似文献   
10.
为防止施工现场高处坠落事故,实现个性化矫正管理,在考虑个体异质性对运动信号造成的差异化影响基础上,提出一种基于高斯混合模型(GMM)的实时检测方法,可及时识别建筑工人高空作业失稳状态。首先,采用姿态传感器实时采集加速度和角速度数据,以刻画建筑工人的高空作业姿态特征;然后,基于GMM算法,建立建筑工人高空作业的个性化失稳检测模型,获得个性化阈值,以判断姿势失稳状态;最后,通过试验对比基于个体数据集和公共数据集2种方式构建的模型。研究结果表明:生成的个性化检测模型在准确度P、召回率R和综合评价指标F1值上,均远优于公共数据集模型,具有更好的个性化检测效果。该失稳检测方法能够从工人的作业姿态习惯探究个性化的高空失稳风险,促进差异化安全预控和精准化安全培训。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号