首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   57篇
  国内免费   222篇
安全科学   26篇
废物处理   10篇
环保管理   20篇
综合类   467篇
基础理论   87篇
污染及防治   81篇
评价与监测   48篇
社会与环境   6篇
灾害及防治   1篇
  2023年   22篇
  2022年   18篇
  2021年   26篇
  2020年   28篇
  2019年   26篇
  2018年   24篇
  2017年   18篇
  2016年   17篇
  2015年   27篇
  2014年   40篇
  2013年   30篇
  2012年   39篇
  2011年   37篇
  2010年   33篇
  2009年   23篇
  2008年   44篇
  2007年   26篇
  2006年   27篇
  2005年   25篇
  2004年   23篇
  2003年   32篇
  2002年   17篇
  2001年   11篇
  2000年   11篇
  1999年   11篇
  1998年   27篇
  1997年   14篇
  1996年   12篇
  1995年   13篇
  1994年   13篇
  1993年   12篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   6篇
排序方式: 共有746条查询结果,搜索用时 16 毫秒
1.
为探究生物滞留系统对NO3--N去除不稳定的主要影响因素,利用国际最佳管理措施数据库(BMPDP)和相关论文中的研究数据,统计分析了气候变量和设计参数对生物滞留系统去除NO3--N的影响,结合偏最小二乘回归(PLS)定量分析了不同影响因素的相对重要性,并提出了不同气候类型下的优化设计建议.结果表明,不同气候类型下生物滞留系统对NO3--N的去除能力分别为亚热带湿润气候(Cfa)>温带大陆气候(Dfa/Dfb)>温带地中海气候(Csb)>寒冷半干旱气候(BSk),对数去除率(LRV)中位数分别为-0.058、-0.212、-0.241和-0.327.设置内部存水区(IWS)、提高植物多样性、设置合理的服务面积比、添加介质土改良剂等措施均可在一定程度上增强生物滞留系统对NO3--N的去除能力.最小二乘回归(PLS)分析表明,气候变量较设计参数更能影响生物滞留系统对NO3  相似文献   
2.
叶诗雨  段玉森  李庆 《环境化学》2021,40(12):3672-3680
降雨的酸度和化学成分主要由区域空气质量决定.本研究通过分析上海市2000-2019年降水监测数据,研究了酸雨强度和频率的变化趋势及其原因.结果 表明,本世纪前二十年上海酸雨污染呈现先加剧后缓解的倒"V"型变化趋势,2019年全市平均酸雨污染水平与2000年相当,其中石化企业集中的金山区取代钢铁火电集中的宝山区成为上海酸雨污染最严重的区域.SO42-、NO3-、NH4+和Ca2+是降水中的主要离子成分.各站点降水SO42-浓度比最高点分别降低了85%-94%,与同期大气SO2降幅基本一致,表明消减SO2排放在酸雨防控中发挥了关键作用.NO3-/SO42-比值不断升高,从最初的~0.3上升到当前的1.0以上,表明上海酸雨已经从硫酸型转变为以硝酸为主的混合型,即,机动车排放污染成为上海酸雨的主控因子.降水中Ca2+浓度降幅超过70%,部分抵消了SO2减排对酸雨的影响.随着碱性大气颗粒物的减少,NH3排放对降水酸度的影响越来越突出.为协同治理PM2.5和酸雨污染,本研究建议在长三角等酸雨区应审慎实施NH3减排措施.  相似文献   
3.
为评估可渗透反应墙(PRB)技术同步去除复合污染地下水中硝酸盐和重金属的可行性,选取蛭石、活性炭、固定化微生物为PRB反应介质,采用批实验和柱实验在不同填装方式及不同水力停留时间等条件下,考察PRB技术对硝酸盐和Cd~(2+)的同步去除效果。结果表明:PRB介质为蛭石或活性炭与固定化微生物组合型填料时,Cd~(2+)对PRB去除复合污染水体中的硝酸盐影响甚微,可实现高效的同步去除;当进水NO_3-N浓度为50 mg·L-1、Cd~(2+)浓度为10 mg·L-1时,活性炭与固定化微生物的组合型反应介质对NO_3-N和Cd~(2+)去除率分别可达93.13%和95.80%,蛭石与固定化微生物的组合型反应介质对NO_3-N和Cd~(2+)去除率分别可达92.70%和99.50%,经处理后的水质可达到地下水Ⅲ级质量标准(GB/T14848-2017)。以蛭石+固定化微生物、活性炭+固定化微生物作为反应介质的PRB技术可以实现NO_3-N和Cd~(2+)的同步去除,该技术可应用于处理硝酸盐和重金属复合污染地下水。  相似文献   
4.
为了解武汉市秋季PM_(2.5)中硫酸盐、硝酸盐理化特征,2016年9—11月利用热还原法在线连续监测分析系统对此进行了采样分析,并同步收集气象因子和离子色谱方法监测结果。结果表明,硫酸盐、硝酸盐的热还原分析方法与离子色谱法的相关系数分别为0.88、0.94;PM_(2.5)中硫酸盐、硝酸盐的水溶性部分占比达92.5%,难溶性部分为7.5%;空气质量为优、良和轻度污染时,硫酸盐、硝酸盐与PM_(2.5)的占比分别为45%、42%、45%;硫酸盐、硝酸盐在降水日和非降水日平均质量浓度分别为(19.6±18.5)μg/m~3和(31.0±9.1)μg/m~3;硝酸盐与硫酸盐的质量比为1.1,高于国内其他城市,与武汉市机动车保有量大幅增加有关。  相似文献   
5.
以活性污泥为种泥,通过序批式反应器(Sequencing Batch Reactor,SBR),在厌氧-缺氧-好氧交替的条件下驯化培养以硝酸盐为主要氮源的反硝化除磷细菌(Denitrifying Phosphorus-Accumulating Organisms,DPAO)。在330 d的培养时间内监测磷酸盐、硝酸盐和亚硝酸盐等常规指标,并研究驯化不同阶段的一个周期内各指标的变化及进行相应的动力学分析。结果表明,随着驯化的进行,厌氧阶段释磷速率逐渐增加,释磷量也相应增大,出水磷质量浓度最终维持在0.8mg/L,去除率达到91.8%,硝氮全部去除。通过对16S r RNA测序结果的比对,得到聚磷菌占总菌的76.93%,反硝化除磷菌占聚磷菌的一半以上。而聚糖菌仅占5.13%,聚磷菌成为优势菌种。此外,在整个驯化过程中,水质和环境条件的变化使出水中磷质量浓度出现波动,而出水硝氮的变化不大。研究表明,以硝酸盐作为主要氮源培养反硝化除磷细菌的方式是可行的,并有利于聚磷菌对聚糖菌的竞争,使聚磷菌成为优势菌种。  相似文献   
6.
利用锆和氯化十六烷基三甲铵共同改性活性炭,制备一种新型去除污水中硝酸盐和磷酸盐的水处理吸附剂,并考察吸附剂加量、反应温度、pH值、共存阴离子等影响因素对吸附效果的影响。结果表明:锆-氯化十六烷基三甲铵改性活性炭(Zr-CTAC-AC)吸附剂适用于硝酸盐和磷酸盐浓度在100mg/L以下的污水,随着Zr-CTAC-AC加量的增加,硝酸盐、磷酸盐去除率逐渐增加,单位吸附量逐渐下降,Zr-CTAC-AC加量为8g/L时,硝酸盐去除率为79%,Zr-CTAC-AC加量为4.0g/L时,磷酸盐去除率可达91%,但应在较低的pH值范围内使用;反应温度对Zr-CTAC-AC的吸附效果影响不大;共存Cl-、HCO3-和SO42-可使硝酸盐的吸附率降低,但对磷酸盐吸附率影响较小;1mol/L NaCl溶液可使吸附到Zr-CTAC-AC表面的硝酸盐90.9%左右被解吸出来,1mol/L NaOH溶液可使吸附到Zr-CTAC-AC表面的磷酸盐78.4%左右被解吸出来。Zr-CTAC-AC能够有效去除污水中硝酸盐和磷酸盐,制备方法简单,且可循环利用,处理成本低。  相似文献   
7.
针对BER(电化学生物膜反应器)的传质问题,设计了MBER(磁场-电化学生物膜反应器).通过对不同电流强度下BER和MBER中NO3--N,NO2--N,NH4+-N和TN去除或产生情况的对比,以及不同电流强度下电流利用效率的分析发现,在HRT为10 h,温度为25℃,进水pH为7.8,进水ρ(NO3--N)为30 mg/L的运行条件下,MBER对NO3--N的去除率高出BER13%~38%,MBER对TN的去除率高出BER 10%~30%.且MBER在电流强度为70 mA时就达到最高去除率,而BER则需要电流强度为80 mA时才能达到最高去除率.试验证明磁场的存在促进了BER反硝化,提高了电流利用效率,使得MBER可以在较低电流强度下达到优于BER的脱氮效果.  相似文献   
8.
太湖西苕溪流域地表水、地下水硝酸盐污染特征及来源   总被引:3,自引:1,他引:2  
为探寻西苕溪流域地下水中NO3--N的污染来源,对西苕溪流域地表水、地下水体的NO3--N污染状况进行了调查,并结合水化学与NO3--N同位素对其来源进行解析.结果显示,西苕溪流域地表水的ρ(NO3--N)为1.07 ~ 3.45 mg/L,ρ(NO2--N)为0.15 ~0.35 mg/L;地下水中ρ(NO3--N)为3.24~15.31 mg/L,平均值达9.26 mg/L.下游地区地下水的ρ(NO2--N)较高(0.26~4.25 mg/L),平均值达3.00 mg/L.ρ(NO3-)与ρ(Cl-)的关系显示,西苕溪地表水、地下水存在比较稳定的NO3--N输入来源.NO3--N同位素分析结果显示,地表水的δ15N为7.0‰~ 16.7‰,说明上游NO3--N主要来源于土壤有机氮的矿化,中下游则主要受到农业施用化肥与人类生活污水二者的共同影响;地下水的δ15N为14.3‰~27.1‰,说明调查区域内的地下水受人畜粪便和生活污水的影响可能更为强烈,另外,地下水中存在的反硝化作用也是造成地下水δ15N增高的原因.  相似文献   
9.
为研究反硝化滤池中溶解氧对反硝化作用的影响,制备性能良好尖端直径在30μm以内的氧(O2)以及硝酸盐(NO3-)微电极,以此为测试工具,对反硝化滤池中生物膜内部O2、NO3-微环境分布进行测试,通过建立扩散-反应方程,获得生物膜微环境耗氧及反硝化活性特征.研究结果表明,溶解氧在生物膜内部呈明显的下降趋势,从主体溶液氧浓度约1mg/L下降至生物膜300μm深度处约为0.生物膜内部反硝化活性区域发生在300~600μm深度范围内.该条件下反硝化滤池生物膜的氧利用速率常数以及反硝化速率常数之间的比值为1.46,溶解氧对反硝化过程的影响是显著的.  相似文献   
10.
厌氧氨氧化电子受体的研究   总被引:1,自引:0,他引:1  
在无机条件下,以该课题组已经培养出来的厌氧氨氧化污泥作为接种污泥,分别以硫酸盐、硝酸盐和亚硝酸盐为电子受体来研究氨的氧化反应。从去除速率的角度来看,以NO2--N、NO3--N和SO42--S为电子受体的反应器,分别在运行的第24.5天、40天和31天时达到0.030 0 kg/(m.3d)NH4+-N去除速率,则氧化氨的能力由大到小依次是:亚硝酸盐>硫酸盐>硝酸盐;从标准吉布斯自由能变化来看,3种反应都是可以发生的;以亚硝酸盐为电子受体的反应过程是一个消耗酸度的生物过程,而以硫酸盐为电子受体的反应过程是一个消耗碱度的生物过程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号