首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
  国内免费   6篇
综合类   7篇
  2023年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
谢丹丹  祁建华  张瑞峰 《环境科学》2017,38(7):2667-2678
于2015年9月至2016年2月在青岛近海连续收集了大气气溶胶分级样品,用离子色谱法分析了其中的水溶性无机离子组分,并讨论了不同强度霾天下气溶胶中二次无机组分的粒径分布,初步探索了霾天SNA的形成过程和影响因素.结果表明,气溶胶中NO_3~-、SO_4~(2-)、NH_4~+、NO_2~-和Cl~-的质量浓度变化范围分别是10.32~193.46、4.42~74.05、2.21~57.75、0.05~2.22和1.35~17.39μg·m~(-3),且SNA的质量浓度随霾污染程度的加剧明显增加.与非霾天相比,轻微、轻度、中度和重度霾天与非霾天相比,NO_3~-的质量浓度分别增加了55%、77%、240%和537%;SO_4~(2-)的质量浓度分别增加了4.7%、35%、77%和262%;NH_4~+的质量浓度分别增加了72%、83%、201%和526%.细粒径上的NO_3~-、SO_4~(2-)与其气态前体物NO_2、SO_2均有显著相关性,且与相对湿度、能见度、风速等气象条件相关性较好,说明细粒径SNA的生成是造成霾天能见度下降,形成空气污染的主要原因之一,同时,高浓度前体物、较大相对湿度、低风速都是影响霾天形成的重要因素.除轻微霾天外,其他不同强度霾天的SOR(硫氧化率)、NOR(氮氧化率)均大于非霾天,且随着霾程度的加剧,SOR、NOR都有明显的升高,尤其是0.43~0.65μm和0.65~1.1μm粒径段;在重度霾天,氮和硫的转化率平均为非霾天的1.5倍,说明细粒径上的硫酸盐和硝酸盐大部分是气-粒转化而来.NO_3~-、NH_4~+、NO_2~-和SO_4~(2-)主要存在于细粒径段,霾天下在细粒径上的比例都显著增大,NO_3~-和SO_4~(2-)在严重霾天所占比例最高,分别达到79.4%和74.4%.NO_3~-在非霾、轻微、轻度霾天时均呈双峰分布,峰值出现在0.43~0.65μm和3.3~4.7μm处,中度霾天时细粒子峰值移动到0.65~1.1μm,在重度霾天粒径分布变为0.65~1.1μm的单峰分布.SO_4~(2-)只在非霾条件下呈双峰分布,峰值出现在0.43~0.65μm和2.1~3.3μm粒径段,霾天下均是单峰分布,轻微和轻度霾天下峰值出现在0.43~0.65μm,中度和重度霾天下峰值在0.65~1.1μm处.NH_4~+呈单峰分布,在非霾和轻微霾天下峰值出现在0.43~0.65μm粒径段,轻度、中度和重度霾天下峰值均出现在0.65~1.1μm粒径段.  相似文献   
2.
魏文淑  祁建华  常成 《环境科学》2023,44(1):127-137
细菌是大气生物气溶胶中最丰富、分布最广的微生物.利用FA-1撞击式生物采样器连续采集了2020年9月至2021年8月青岛近海大气生物气溶胶分级样品,并利用BacLightTM试剂染色-荧光显微镜计数方法测定了死/活细菌浓度,分析其浓度与粒径的季节分布特征,并研究了雾、霾和沙尘等特殊天气对细菌浓度及粒径分布的影响.结果表明,采样期间青岛近海生物气溶胶中细菌浓度为(1.06±0.68)×105 cells·m-3,其中活细菌和死细菌浓度分别为(8.20±4.88)×103 cells·m-3和(9.74±6.72)×104 cells·m-3.细菌浓度分布具有季节差异,死细菌浓度春季、冬季最高,夏季最低;活细菌浓度则变现为春季最高,夏季和秋季较低,冬季最低.生物气溶胶中细菌浓度随月份存在变化,死细菌月均浓度最高值和最低值分别出现在2021年春季3月和夏季6月,而活细菌月均浓度最高值则出现在2021年春季5月,最低值在2020年冬季12月....  相似文献   
3.
北京夏冬季霾天气下气溶胶水溶性离子粒径分布特征   总被引:15,自引:11,他引:4  
黄怡民  刘子锐  陈宏  王跃思 《环境科学》2013,34(4):1236-1244
为研究北京夏、冬季霾粒子中水溶性离子的粒径谱分布,并进一步分析其来源及形成机制,于2009年夏季和冬季利用惯性撞击式8级采样器(Andersen)和石英微量振荡天平(TEOM)对北京城区大气气溶胶分别进行了为期2周的连续采样和监测,并用离子色谱(IC)对气溶胶中的水溶性离子进行了分析.结果表明,夏季霾天PM10和PM2.5的质量浓度分别为(245.5±8.4)μg.m-3和(120.2±2.0)μg.m-3,冬季霾天对应的数值分别为(384.2±30.2)μg.m-3和(252.7±47.1)μg.m-3,无论夏季还是冬季,霾天大气细粒子污染均十分严重.细粒子中总水溶性离子(TWSS)的浓度霾天远高于对照天,其中霾天浓度上升较快的是SO24-、NO3-和NH4+,二次无机离子对霾天气的形成过程扮演重要作用.除NO3-外,其余7种水溶性离子夏、冬季霾天粒径谱分布一致,即,SO24-、NH4+主要分布于PM1.0以下的细粒子模态,Mg2+、Ca2+主要分布于PM2.5以上的粗粒子模态,Na+、Cl-和K+呈双模态分布;夏季霾天NO3-呈双模态分布,而冬季则主要分布于细粒子中.夏季霾天SO24-的平均质量中值粒径(MMAD)为0.64μm,SO24-主要来自远程SO2的云内反应,并且SO2表观转化率(SOR)高于对照天,使得霾天光化学反应生成的细粒子远远高于对照天气过程;冬季霾天SO24-的MMAD增至0.89μm,冬季因局地SO2排放并被非均相化学反应过程氧化为SO24-亦为北京大气细粒子的重要来源.夏、冬季霾天NO3-的MMAD分别为2.85μm和0.80μm,受到温度的影响,NO3-夏、冬季节分别以硝酸钙和硝酸铵的形式存在于粗、细粒子中.  相似文献   
4.
杨唐  韩云平  李琳  刘俊新 《环境科学》2019,40(4):1680-1687
粒径分布和微生物种群结构是雾-霾天气溶胶与人体健康密切相关的典型特征.采用安德森六级采样器在人体平均呼吸高度(近地面1.5 m)处对北京某地雾-霾天及晴天分别进行气溶胶样品采集,从不同粒径气溶胶中的可培养细菌、真菌浓度及种群结构角度展开研究.结果表明,雾-霾天不同粒径气溶胶中可培养微生物浓度呈现不均匀分布状态;不同粒径气溶胶中微生物浓度、种群结构差异性均明显高于晴天.雾-霾天条件下,在粒径大于3.3 μm的气溶胶中,芽孢杆菌(Bacillus sp.)占据优势地位,在粒径小于3.3 μm的气溶胶中,芽孢杆菌(Bacillus sp.)和解淀粉芽孢杆菌(Bacillus amyloliquefaciens)占优势地位.而当雾-霾过后,解淀粉芽孢杆菌(Bacillus amyloliquefaciens)在所有粒径的生物气溶胶中均占优势地位.雾-霾天条件下,在粒径大于3.3 μm的气溶胶中共检出5种优势真菌,分别是链格孢菌(Alternaria sp.)、意大利青霉(Penicillium italicum)、蓝状菌(Talaromyces stollii)、枝孢菌(Cladosporium sp.)和Davidiella sp.;而当雾-霾过后,仅链格孢菌(Alternaria sp.)被检测为优势菌.无论雾-霾天还是晴天,在粒径小于3.3 μm的气溶胶中真菌均主要以意大利青霉(Penicillium italicum)和蓝状菌(Talaromyces stollii)为主.在人体平均呼吸高度处,雾-霾天与晴天不同粒径气溶胶中微生物浓度和种群结构存在明显差异.雾-霾天人体平均呼吸高度处微生物浓度高、且种群结构较为复杂,其微生物特性对人体健康的潜在风险不容忽视.  相似文献   
5.
为探究青岛近海不同天气下气溶胶中金属元素的浓度分布特征,于2012年4~5月,2012年8月~2013年3月在青岛近海采集了总悬浮颗粒物(TSP)样品,利用电感耦合等离子体质谱法(ICP-MS)和电感耦合等离子体原子发射光谱法(ICPAES)分析了主要微量金属元素.结果表明,Al、Ca、Fe、Na、K和Mg是TSP中主要的金属元素,质量浓度占所测元素总浓度的94.2%.TSP及金属元素浓度月变化明显,Fe、Al、K、Ca、Mg、Zn、Ba、Mn、Ti、Sr和Li均在11月和1月浓度最高,Be、Sc、Co、Ni和Cr在1月最高,Na在8、11和2月较高,12月最低,Pb在1月和2月最高,8月和12月最低.富集因子表明Be、Co、Al、Ca、Fe、K、Mg、Mn、Sr和Ti主要受自然源影响,Li、Cr、Ni、Zn、Ba和Na除受自然源外,还受部分人为源影响,Pb主要来自人为源.不同天气状况对TSP及其金属元素浓度影响较大,除Ti外,所测元素浓度均在烟雾天最高.与晴天相比,烟雾天除Ti外,其余元素均升高,增幅为1~4倍,雾天Li、Be、Cr、Ni、Al、Fe、Mg和Mn变化不大,Pb和Na升高较多,Co、Ca和Ti降低较多,霾天Cr、Co和Ti降低,其余元素浓度升高,增幅为1~3倍.大部分元素在晴天富集因子最小,雾天富集因子最大.Ni、Zn、Ba、K、Na、Pb和Sr富集因子为晴<霾<烟雾<雾,Fe和Mn为晴<烟雾<霾<雾,Al和Mg为晴<雾<霾<烟雾,其余金属不同天气下富集因子的变化规律各不相同.  相似文献   
6.
为探明天气状况对可培养微生物气溶胶分布特性的影响,于2014年8月-2015年7月利用Anderson六级空气微生物采样器对西安市微生物气溶胶进行采样,通过培养法检测分析了可培养细菌和真菌气溶胶在1 a的月际与季节性浓度变化特征,重点研究了不同天气状况下气溶胶的浓度与粒径分布.结果表明:西安市可培养细菌和真菌气溶胶月均浓度均在10月最高,分别为(1 004.81±546.14)和(765.54±544.36)CFU/m3.可培养细菌和真菌气溶胶的季节平均浓度均在夏季最低,分别为(361.96±56.96)和(280.33±74.43)CFU/m3;不同天气条件下气溶胶的浓度变化为晴天 < 雨天 < 阴云天 < 霾天.可培养细菌气溶胶在晴天、阴云天、雨天和霾天粒径分布的峰值分别出现在3.3~4.7、4.7~7.0、3.3~4.7、3.3~4.7 μm区间上,表现为明显的单峰分布;而可培养真菌气溶胶的粒径分布在非霾天则无显著性差异(P>0.05).不同天气状况下可呼吸微生物气溶胶均超过总微生物气溶胶的60%.各天气状况下可培养细菌气溶胶的几何中值直径大于真菌气溶胶.   相似文献   
7.
南京北郊大气颗粒物的粒径分布及其影响因素分析   总被引:3,自引:3,他引:0  
在南京北郊使用FA-3型9级采样器对2014年1~11月颗粒物的粒径分布进行了采样分析.首先将FA-3与中流量分级采样器(KC-120H)和环境保护局在线监测仪器的同期监测结果进行对比,数据相关系数均在0.95以上,对细粒子FA-3分别偏低13.9%和16.6%,而对PM_(10)偏高15.2%和13.3%,但采样偏差在大气采样可接受范围之内,说明其可以对大气颗粒物进行准确分级和采样.南京北郊颗粒物污染严重,PM_(1.1),PM_(2.1)和PM_(10)的年平均浓度分别为(65.6±37.6)、(91.0±54.7)和(168.0±87.0)μg·m-3,污染以细粒子为主,且大部分在1.1μm以下;颗粒物粒径呈双峰分布,峰值位于0.43~0.65μm和9~10μm粒径段;中值粒径为1.83μm,为积聚模态污染.颗粒物粒径分布在冬季细粒径段较高,春季粗粒径段较高,夏季细粒径段降低并不明显,粗粒径段明显低于其他季节;颗粒物浓度的昼夜变化在粗粒径段差异很小,在细粒径段基本表现出夜晚大于白天的特征.除了夏季,降水对各个粒径范围的颗粒物都有清除作用,且在细粒径段表现得更为明显;霾发生时随着霾等级的加重,0.43~2.1μm粒径段颗粒物浓度逐渐增加,该粒径段颗粒物质量浓度与能见度呈显著负相关.以相对湿度70%为界,颗粒物粒径分布发生了明显变化,湿度大于70%后,小于0.43μm粒径段颗粒物质量浓度显著降低,而0.43~2.1μm粒径段明显上升,颗粒物的吸湿增长应是主要原因.南京北郊的气团来源可以分为四类,其中西北方向快速输送的气团最为洁净,细粒径颗粒物浓度明显低于其它方向;本地和周边近距离输送的气团污染最重,粗细粒径颗粒物浓度都较高,其传输距离短,风速小,发生污染的概率最大,达到73.9%,对南京市的空气污染贡献较大.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号