首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   688篇
  免费   103篇
  国内免费   168篇
安全科学   14篇
废物处理   72篇
环保管理   81篇
综合类   479篇
基础理论   116篇
污染及防治   187篇
评价与监测   8篇
社会与环境   2篇
  2023年   6篇
  2022年   25篇
  2021年   18篇
  2020年   21篇
  2019年   19篇
  2018年   19篇
  2017年   19篇
  2016年   25篇
  2015年   52篇
  2014年   83篇
  2013年   71篇
  2012年   56篇
  2011年   45篇
  2010年   34篇
  2009年   54篇
  2008年   52篇
  2007年   52篇
  2006年   46篇
  2005年   34篇
  2004年   35篇
  2003年   26篇
  2002年   19篇
  2001年   33篇
  2000年   22篇
  1999年   20篇
  1998年   12篇
  1997年   10篇
  1996年   11篇
  1995年   10篇
  1994年   5篇
  1993年   9篇
  1992年   10篇
  1991年   4篇
  1990年   1篇
  1987年   1篇
排序方式: 共有959条查询结果,搜索用时 31 毫秒
1.
提高畜禽粪便沼气发酵产气量的研究进展   总被引:1,自引:0,他引:1  
随着畜禽养殖规模的不断扩大,合理处理畜禽粪便是目前刻不容缓的问题。目前,沼气发酵是解决畜禽养殖场粪污处理和资源化利用的主要方式之一,且通过提高畜禽粪便沼气发酵产气量可以实现将粪便变废为宝的目的和达到资源利用最大化效果。综述了畜禽粪便沼气发酵产气的内在影响因素和外在影响因素对产气量的影响,为提高畜禽粪便的利用率和沼气发酵产气量提供参考依据。  相似文献   
2.
The co-digestion of a variable amount of fruit and vegetable waste in a waste mixed sludge digester was investigated using a pilot scale apparatus. The organic loading rate (OLR) was increased from 1.46 kg VS/m3 day to 2.8 kg VS/m3 day. The hydraulic retention time was reduced from 14 days to about 10 days. Specific bio-methane production increased from about 90 NL/kg VS to the maximum value of about 430 NL/kg VS when OLR was increased from 1.46 kg VS/m3 day to 2.1 kg VS/m3 day. A higher OLR caused an excessive reduction in the hydraulic retention time, enhancing microorganism wash out. Process stability evaluated by the total volatile fatty acids concentration (mg/l) to the alkalinity buffer capacity (eq. mg/l CaCO3) ratio (i.e. FOS/TAC) criterion was <0.1 indicating high stability for OLR <2.46 kg VS/m3 day. For higher OLR, FOS/TAC increased rapidly. Residual phytotoxicty of the digestate evaluated by the germination index (GI) (%) was quite constant for OLR < 2.46 kg VS/m3 day, which is lower than the 60% limit, indicating an acceptable toxicity level for crops. For OLR > 2.46 kg VS/m3 day, GI decreased rapidly. This corresponding trend between FOS/TAC and GI was further investigated by the definition of the GI ratio (GIR) parameter. Comparison between GIR and FOS/TAC suggests that GI could be a suitable criterion for evaluating process stability.  相似文献   
3.
运用Gambit软件建立了污泥好氧发酵堆体的多孔介质模型,通过自行设计的实验装置获得了堆体的通风粘性阻力系数和惯性阻力系数以及功能膜压差与透气量之间的关系,用Fluent软件分析了堆体不同截面形状及底部通风管数量对堆体通风均匀性的影响,为确定合理的通风管数量及截面几何形状提供理论依据。对上海奉贤区城镇污水厂污泥处理工程发酵仓进行堆体流场模拟,确定堆体采用小拱形截面形状,堆高2 m,宽8 m,底部设置4条通风管,实际运行效果良好。  相似文献   
4.
采用酸碱预处理乌梁素海典型沉水植物龙须眼子菜和挺水植物芦苇,通过厌氧发酵动力学分析、还原糖变化及微观结构解析,研究酸碱预处理对水生植物厌氧发酵联产氢气-甲烷的影响。实验结果表明,酸碱预处理后水生植物厌氧发酵联产氢气-甲烷两阶段累积产气量、氢气及甲烷含量均显著提高,酸处理效果优于碱处理。采用0.5 mol/L HCl预处理龙须眼子菜效果最佳,最大氢气、甲烷含量分别达42.65%和52.82%,产氢气速率为4.118 mL/h,产甲烷速率最高达14.199 mL/h。芦苇经1 mol/L HCl预处理效果最佳,最高氢气、甲烷含量分别为32.22%和65.26%。扫描电镜微观结构分析表明,酸碱预处理可显著破坏芦苇、龙须眼子菜的纤维素结构,有效增加植物与微生物接触面积,有利于厌氧发酵联产氢气-甲烷工艺的快速启动和稳定运行。  相似文献   
5.
In this work, anaerobic digestion of pig slurry and successive composting of the digestate after centrifugation were studied by means of chemical analysis, FTIR and fluorescence spectroscopy as excitation–emission matrix (EEM). Chemical analysis highlighted the organic matter transformation occurring during the processes. A decrease of volatile solids and total organic carbon were observed in the digestate with respect to the fresh pig slurry as a consequence of the consumption of sugars, proteins, amino acids and fatty acids used by microorganisms as a C source. Water Extractable Organic Matter (WEOM) was obtained for all samples and fractionated into a hydrophilic and a hydrophobic fraction. The highest WEOM value was found in the pig slurry indicating a high content of labile organic C. The digestate centrifuged and the digestate composted showed lower hydrophilic and higher hydrophobic contents because of the decrease of labile C. Total phenolic content was lower in the digestate with respect to fresh pig slurry sample (36.7%) as a consequence of phenolic compounds degradation. The strong decrease of total reducing sugars in the digestate (76.6%) as compared to pig slurry confirmed that anaerobic process proceed mainly through consumption of sugars which represent a readily available energy source for microbial activity. FTIR spectra of pig slurry showed bands indicative of proteins and carbohydrates. A drop of aliphatic structures and a decrease of polysaccharides was observed after the anaerobic process along with the increase of the peak in the aromatic region. The composted substrate showed an increase of aromatic and a relative decrease of polysaccharides. EEM spectra provided tryptophan:fulvic-like fluorescence ratios which increased from fresh substrate to digestate because of the OM decompostion. Composted substrate presented the lowest ratio due to the humification process.  相似文献   
6.
The addition of lipid wastes to the digestion of swine manure was studied as a means of increasing biogas production. Lipid waste was obtained from a biodiesel plant where used cooking oil is the feedstock. Digestion of this co-substrate was proposed as a way of valorising residual streams from the process of biodiesel production and to integrate the digestion process into the biorefinery concept.Batch digestion tests were performed at different co-digesting proportions obtaining as a result an increase in biogas production with the increase in the amount of co-substrate added to the mixture. Semi-continuous digestion was studied at a 7% (w/w) mass fraction of total solids. Co-digestion was successful at a hydraulic retention time (HRT) of 50 d but a decrease to 30 d resulted in a decrease in specific gas production and accumulation of volatile and long chain fatty acids. The CH4 yield obtained was 326 ± 46 l/kg VSfeed at an HRT of 50 d, while this value was reduced to 274 ± 43 l/kg VSfeed when evaluated at an HRT of 30 d. However these values were higher than the one obtained under batch conditions (266 ± 40 l/kg VSfeed), thus indicating the need of acclimation to the co-substrate. Despite of operating at low organic loading rate (OLR), measurements from respirometry assays of digestate samples (at an HRT of 50 d) suggested that the effluent could not be directly applied to the soil as fertiliser and might have a negative effect over soil or crops.  相似文献   
7.
A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array.  相似文献   
8.
Trichoderma spp. are among the most widely recognized biocontrol fungi used to inhibit pathogens and promote plant growth. These functions are related to primary and secondary metabolites. This study investigated the different metabolites in Trichoderma asperellum TJ01 cultured for 24 and 72?h using liquid chromatography with triple-quadrupole mass spectrometry. Compared to the 24?h culture of T. asperellum TJ01, the 72?h culture with amino acid metabolism tended to decrease while sugar and lipid metabolisms tended to increase. Furthermore, the 72?h culture had a higher proportion of upregulated flavonoids, in combination with a higher proportion of downregulated alkaloids, and equal proportions of upregulated and downregulated polyphenols and hormones. This study also identified a few valuable medicinal substances such as trigonelline and 5-hydroxytryptophan in T. asperellum TJ01 fermentation cultures.  相似文献   
9.
● Converting xylose to caproate under a low temperature of 20 °C by MCF was verified. ● Final concentration of caproate from xylose in a batch reactor reached 1.6 g/L. ● Changing the substrate to ethanol did not notably increase the caproate production. ● Four genera, including Bifidobacterium , were revealed as caproate producers. ● The FAB pathway and incomplete RBO pathway were revealed via metagenomic analysis. Mixed culture fermentation (MCF) is challenged by the unqualified activity of enriched bacteria and unwanted methane dissolution under low temperatures. In this work, caproate production from xylose was investigated by MCF at a low temperature (20 °C). The results showed that a 9 d long hydraulic retention time (HRT) in a continuously stirred tank reactor was necessary for caproate production (~0.3 g/L, equal to 0.6 g COD/L) from xylose (10 g/L). The caproate concentration in the batch mode was further increased to 1.6 g/L. However, changing the substrate to ethanol did not promote caproate production, resulting in ~1.0 g/L after 45 d of operation. Four genera, Bifidobacterium, Caproiciproducens, Actinomyces, and Clostridium_sensu_stricto_12, were identified as the enriched caproate-producing bacteria. The enzymes in the fatty acid biosynthesis (FAB) pathway for caproate production were identified via metagenomic analysis. The enzymes for the conversion of (Cn+2)-2,3-Dehydroxyacyl-CoA to (Cn+2)-Acyl-CoA (i.e., EC 1.3.1.8 and EC 1.3.1.38) in the reverse β-oxidation (RBO) pathway were not identified. These results could extend the understanding of low-temperature caproate production.  相似文献   
10.
Liquid hot water (LHW), an environmental-friendly physico-chemical treatment, was applied to pretreat the sugarcane bagasse (SCB). Tween80, a non-ionic surfactant, was used to enhance the enzymatic hydrolysis of the pretreated SCB. It found that 0.125 mL Tween80 /g dry matter could make the maximum increase (33.2%) of the glycan conversion of the LHW-pretreated SCB. A self-designed laboratory facility with a plate-and-frame impeller was applied to conduct batch hydrolysis, fed-batch hydrolysis, and the process of high-temperature (50°C) fed-batch hydrolysis following low-temperature (30°C) simultaneous saccharification and fermentation (SSF) which was adopted to overcome the incompatible optimum temperature of saccharification and fermentation in the SSF process. After hydrolyzing LHW-pretreated SCB for 120 h with commercial cellulase, the total sugar concentration and glycan conversion obtained from fed-batch hydrolysis were 91.6 g/L and 68.3%, respectively, which were 9.7 g/L and 7.3% higher than those obtained from batch hydrolysis. With Saccharomyces cerevisiae Y2034 fermenting under the non-sterile condition, the ethanol production and theoretical yield obtained from the process of SSF after fed-batch hydrolysis were 55.4 g/L and 88.3% for 72h, respectively, which were 15.5 g/L and 24.7% higher than those from separate fed-batch hydrolysis and fermentation. The result of this work was superior to the reported results obtained from the LHW-pretreated SCB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号