首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   20篇
  国内免费   67篇
安全科学   6篇
废物处理   1篇
环保管理   4篇
综合类   116篇
基础理论   9篇
污染及防治   33篇
评价与监测   3篇
  2023年   1篇
  2022年   4篇
  2021年   8篇
  2020年   6篇
  2019年   11篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   6篇
  2014年   8篇
  2013年   7篇
  2012年   5篇
  2011年   8篇
  2010年   12篇
  2009年   8篇
  2008年   12篇
  2007年   15篇
  2006年   9篇
  2005年   6篇
  2004年   5篇
  2003年   8篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
1.
pH和DO对好氧颗粒污泥去除高氨氮废水的影响研究   总被引:1,自引:0,他引:1  
研究使用SBR成功培养的结构紧密、外形规则,具有良好脱氮性能的成熟好氧颗粒污泥处理高浓度氨氮废水,并探讨pH和DO对其处理效果的影响,旨在为工程实践提供理论依据。通过人工模拟废水,以蔗糖作为唯一碳源,NH4Cl为氮源,将进水NH4+-N浓度由300 mg/L逐步提高至900 mg/L,相应的NH4+-N负荷由0.6 kg/(m3.d)提高至1.8 kg/(m3.d),考察pH和DO对其处理效果的影响。研究结果表明:当控制反应器pH为8.0,曝气量为75 L/h时,好氧颗粒污泥脱氮的效果最好,氨氮去处率分别为96.70%9、2.33%。由于运行过程中每隔15 min监测每个反应器pH值,使其维持在各自pH值7.0±0.1范围内。这种酸碱度环境对异养菌等微生物并没有产生抑制作用;因此在各pH条件下,COD去除的所需时间和去除率基本没有差别。在不同的DO下,COD在初始的60 min里降解速度有明显区别。曝气量为150 L/h时,COD的降解速度最快,但是曝气量过大颗粒污泥内部厌氧区被压缩,因此选择最佳的曝气量为75 L/h。  相似文献   
2.
水中重金属去除一直是水处理的技术难点.锰虽然是动物必需的微量元素之一,但是人和动物摄入过量的锰会对神经系统等产生毒害.利用皂土吸附水中的重金属Mn2+,在装有微电极阵列芯片的介电泳池研究装置中,通过调节外加交流电压,捕获悬浮液中的皂土从而间接去除Mn2+.吸附了微量重金属离子的皂土被捕获到电场强度较大的区域,发生了正介电泳.该研究为建立一种从废水中间接去除重金属离子的实际可行方法奠定了实验基础,不存在二次污染.  相似文献   
3.
大型沼气工程中生物脱硫技术   总被引:3,自引:0,他引:3  
随着我国对可再生能源的开发和利用的不断深入发展,利用畜禽粪便厌氧发酵产沼气是一种非常有前景的能源利用途径,但所产生的沼气中都含有H2S气体,由于它是一种腐蚀性很强的化合物,所以沼气脱硫是沼气利用的关键环节。本文以某工程调试与运行实例分析了大型沼气工程中的生物脱硫技术,以为同类型工程提供参考。  相似文献   
4.
本文以畜禽废水为处理对象,通过试验将序批式运行模式应用到好氧三相内循环生物流化床反应器中形成新型SBBR,考察在不同溶解氧(DO)浓度条件下新型SBBR反应器运行处理效果及氮的转化情况,结果表明:在室温下,进水CODCr浓度为2 000 mg/L,总氮(TN)浓度为140 mg/L,交替好氧-缺氧模式为3.0h(曝气)...  相似文献   
5.
DO浓度对间歇曝气单级自养脱氮系统N2O排放的影响   总被引:1,自引:0,他引:1  
以单级自养脱氮系统为研究对象,采用有效容积为15 L的SBBR反应器,系统进水NH+4-N浓度约为360 mg/L,控制温度为(30±2)℃,采用间歇曝气方式运行,曝气段DO浓度从2.4~2.6 mg/L逐渐下降到0.9~1.1 mg/L,研究了单级自养脱氮系统的脱氮性能与N2O排放情况。结果表明,反应器曝气段DO浓度从2.4~2.6 mg/L下降到0.9~1.1mg/L,系统TN去除率均达到80%,但在相同运行时间内的TN去除率依次降低,NH+4-N平均反应速率从0.19 mg/(L·min)降低至0.05 mg/(L·min),NO-3-N累计产生量稳定于14.9~16.5 mg/L,NO-2-N浓度在反应器内未产生明显的积累。随着曝气段DO浓度的下降,最大N2O释放速率逐渐降低,N2O累计释放量从73.8 mg下降到61.0 mg,N2O转化率介于2.4%~2.9%。  相似文献   
6.
序批式生物膜反应器挂膜启动实现短程硝化   总被引:2,自引:0,他引:2  
常温条件下(20~25℃),以模拟的人工配水为研究对象,采用序批式生物膜反应器(SBBR),在初期挂膜的基础上,笔者运用两种不同的挂膜方式即重新加入新泥和不加新泥而加大进水COD浓度来实现生物膜的快速启动。实验表明,2种挂膜启动通过14 d的培养与富集,NH4+-N与COD的处理效果都能分别达到85%和75%以上。将剩余污泥排尽后,采用第1种挂膜方式的反应器通过连续间歇曝气,达到了比较好的短程硝化效果。调整溶解氧,并且通过先下降后上升曝气量的方式,能进一步提高亚氮的出水。最终在DO为3.6 mg/L时,亚氮的积累率能达到平均74%左右,达到了比较好的亚硝化效果。而第2种挂膜方式培养的生物膜则以好氧反硝化菌为主,去除的氨氮由同化作用和培养的好氧反硝化菌去除,以后者为主。通过比较可以看出,为了实现短程硝化,第1种挂膜方式比第2种更具有优越性,有利于硝化菌种的生长和亚氮的积累,而第2种方式则有利于培养好氧反硝化菌。  相似文献   
7.
CASS工艺脱氮影响因素分析   总被引:4,自引:0,他引:4  
针对CASS工艺脱氮的效果不够理想、效率不高、出水不够稳定的现象,对脱氮的主要影响因素曝气时间、DO、温度、λ进行了生产性试验研究,分析结果表明,曝气时间3h,D02.5mg/L是本污水厂最合理的参数控制值,曝气时间3h时NH3-N和TN的平均去除率分别为89.7%和59.7%,D02.5mg/L时NH3-N和TN的平均去除率分别为94.5%和71.3%,脱氮效果良好;温度对脱氮的效果有很明显的影响,春季的脱氮效果明显好于冬季;脱氮效果随冲水比的增高而降低,但出水均达标说明CASS工艺有良好的抗冲击负荷的能力。  相似文献   
8.
通过介绍短程硝化的机理,分析了温度、pH、DO浓度、SRT、游离氨浓度、实时控制技术及有机物浓度6个方面对于短程硝化的影响,探讨如何控制这些影响因素来达到亚硝酸盐的积累以及应用于实际所面临的困难,并展望了研究的发展方向  相似文献   
9.
蔡良圣  林君  辛青  臧月 《中国环境科学》2020,40(8):3394-3400
为改善微电极在阳极溶出伏安法检测重金属离子过程中低电流响应和低电催化能力的缺点,提出了一种在碳纤维微电极表面合成还原氧化石墨烯/纳米金材料制得还原氧化石墨烯纳米金修饰碳纤维微电极(rGO/AuNPs CFMEs)的方法.通过SEM表征,所制备的rGO/AuNPs CFMEs具有比表面积高、吸附能力强和催化活性好的特点,因此改性微电极适合作为方波阳极溶出伏安法(SWASV)测定水中铜离子(Cu2+)的工作电极.在构建微传感器测试水中痕量铜离子系统后,对pH值、电导率、富集时间和富集电位等检测条件进行了优化.在pH值为4,电导率为36.1S/m,富集时间为360s,富集电位为-1.2V的最佳条件下,铜的线性范围和检出限分别0~1.0μmol/L和2.4nmol/L.此外,微传感器的可重复性、长期稳定性以及选择性也得到了验证.  相似文献   
10.
为了提高单级自养脱氮工艺的脱氮性能及稳定性,采用SBBR反应器,通过连续试验及间歇试验研究了曝气量对单级自养脱氮系统脱氮效率及脱氮负荷的影响,分析了反应器内不同曝气条件下氨氮降解特征、亚硝酸盐质量浓度与氨氮降解速率的关系,并探讨了污泥的亚硝酸盐氧化活性与SBBR反应器稳定性的关系。连续试验结果表明,曝气量从48 L/h提高到88 L/h,总氮平均去除率由72.46%增长至93.00%,总氮平均去除负荷由0.29 kg N/(m3·d)提高至0.57kg N/(m3·d)。间歇试验结果表明:氨氮降解速率随曝气量增加而提高,出水氨氮及总氮质量浓度随曝气量增加而降低;同时曝气期DO质量浓度随曝气量增加而有所升高;在整个SBBR周期内未出现亚硝酸盐积累的现象,亚硝酸氮质量浓度一直较低(低于2.00mg/L),向反应器中添加亚硝酸盐可以促进氨氮的降解;随曝气量增加,由于污泥的亚硝酸盐氧化活性较低,硝化作用产生的硝酸盐并未大幅增长,系统表现出了较好的稳定性;氨氮未完全降解时,反应器内DO质量浓度曲线缓慢下降或基本保持不变,当氨氮完全被去除时,系统不再耗氧,DO质量浓度迅速升高,曲线出现拐点,DO拐点对单级自养脱氮控制有重要参考价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号