首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   2篇
  国内免费   4篇
环保管理   1篇
综合类   12篇
基础理论   15篇
污染及防治   22篇
评价与监测   2篇
社会与环境   2篇
  2022年   1篇
  2020年   1篇
  2015年   3篇
  2013年   4篇
  2012年   1篇
  2011年   19篇
  2010年   7篇
  2009年   7篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2003年   1篇
  1999年   1篇
  1998年   2篇
  1994年   2篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
1.
• The rice growth was promoted by nano-TiO2 of 0.1–100 mg/L. • Nano-TiO2 enhanced the energy storage in photosynthesis. • Nano-TiO2 reduced energy consumption in carbohydrate metabolism and TCA cycle. Titanium dioxide nanoparticle (nano-TiO2), as an excellent UV absorbent and photo-catalyst, has been widely applied in modern industry, thus inevitably discharged into environment. We proposed that nano-TiO2 in soil can promote crop yield through photosynthetic and metabolic disturbance, therefore, we investigated the effects of nano-TiO2 exposure on related physiologic-biochemical properties of rice (Oryza sativa L.). Results showed that rice biomass was increased >30% at every applied dosage (0.1–100 mg/L) of nano-TiO2. The actual photosynthetic rate (Y(II)) significantly increased by 10.0% and 17.2% in the treatments of 10 and 100 mg/L respectively, indicating an increased energy production from photosynthesis. Besides, non-photochemical quenching (Y(NPQ)) significantly decreased by 19.8%–26.0% of the control in all treatments respectively, representing a decline in heat dissipation. Detailed metabolism fingerprinting further revealed that a fortified transformation of monosaccharides (D-fructose, D-galactose, and D-talose) to disaccharides (D-cellobiose, and D-lactose) was accompanied with a weakened citric acid cycle, confirming the decrease of energy consumption in metabolism. All these results elucidated that nano-TiO2 promoted rice growth through the upregulation of energy storage in photosynthesis and the downregulation of energy consumption in metabolism. This study provides a mechanistic understanding of the stress-response hormesis of rice after exposure to nano-TiO2, and provides worthy information on the potential application and risk of nanomaterials in agricultural production.  相似文献   
2.
The effects of mercury (HgCl2) on cell population, chlorophyll a concentration and rates of photosynthesis and excretion were investigated in the phytoplanktonic species Dunaliella minuta in laboratory cultures. Mercury, above 25ppb inhibited both cell population and chlorophyll a concentration approximately to the same extent, whereas the photosynthetic rate was inhibited to a significantly lesser degree. Although, the total photosynthetic rate of the tested organism was reduced, above a threshold concentration, the photosynthetic activity was not reduced under these conditions, but it was in fact significantly greater than that in the control culture. This may suggest that in D. minuta the inhibitory effect of mercury is primarily on cell division rather than cellular photosynthesis, which is enhanced by the fact mercury caused a significant increase of the mean cell volume. Mercury, also, decreased the growth rate and final cell yield. The excretory rate was markedly increased at concentrations ≥ 250 ppb of mercury, but at lower concentrations it tended to depend more on the physiological state of cells than on mercury concentration. In the different cultures, the photosynthetic activity showed variations which occurred without major changes in the chlorophyll a content per cell, which remained almost constant and independent of variations in cell size and growth conditions.  相似文献   
3.
The halophytic shrub Halimione portulacoides is known to be capable of growth in soils containing extremely high concentrations of Zn. This study evaluated in detail the tolerance and accumulation potential of H. portulacoides under moderate and high external Zn levels. A greenhouse experiment was conducted in order to investigate the effects of a range of Zn concentrations (0-130 mmol L−1) on growth and photosynthetic performance by measuring relative growth rate, total leaf area, specific leaf area, gas exchange, chlorophyll fluorescence parameters and photosynthetic pigment concentrations. We also determined the total zinc, nitrogen, phosphorus, calcium, magnesium, sodium, potassium, iron and copper concentrations in the plant tissues. H. portulacoides demonstrated hypertolerance to Zn stress, since it survived with leaf concentrations of up to 2300 mg Zn kg−1 dry mass, when treated with 130 mmol Zn L−1. Zinc concentrations greater than 70 mmol L−1 in the nutrient solution negatively affected plant growth, in all probability due to the recorded decline in net photosynthesis rate. Our results indicate that the Zn-induced decline in the photosynthetic function of H. portulacoides may be attributed to the adverse effect of the high concentration of the metal on photosynthetic electron transport. Growth parameters were virtually unaffected by leaf tissue concentrations as high as 1500 mg Zn kg−1 dry mass, demonstrating the strong capability of H. portulacoides to protect itself against toxic Zn concentrations. The results of our study indicate that this salt-marsh shrub may represent a valuable tool in the restoration of Zn-polluted areas.  相似文献   
4.
缺磷是限制农林业产量的一个重要因子,传统的农林业生产主要通过施肥和土壤改良来满足植物对磷的需求,近年来人们开始发掘磷高效利用植物来替代传统方法提高磷的利用效率.A-65/27、A-65/31及A-61/186是目前世界上仅有的3个常绿杨树无性系,共同特点是容易扦插繁殖,造林成活率高,生长快,材质好.3个无性系的推广将极大地丰富南方用材林树种资源.为揭示磷素胁迫条件下常绿杨无性系对土壤中磷素的利用特性,通过沙培试验,设计5个磷素处理水平(磷的质量浓度依次是0.00、0.0310、0.0619、0.1239、0.1858 g·L~(-1)),进行不同磷素处理水平下常绿杨生长及生理生态特性的研究.结果表明:当磷的质量浓度为0.0619 g·L~(-1)时已经能满足常绿杨生长对磷的基本需求;磷素不足会明显的影响到常绿杨的生长.低磷胁迫下常绿杨高度、地径及生物量明显降低;低磷胁迫下光合速率也明显下降,通过对气孔导度及胞间二氧化碳浓度的变化趋势分析,导致光合速率下降的主要原因是非气孔限制因素,同步叶绿素荧光的测定表明光系统Ⅱ受到了一定的影响,这是非气孔限制因素之一.  相似文献   
5.
Soybean wastewater was used to generate biomass resource by use of purple non-sulfur bacteria (PNSB). This study investigated the enhancement of PNSB cell accumulation in wastewater by Mg2+ under the light-anaerobic condition. Results showed that with the optimal Mg2+ dosage of 10 mg/L, biomass production was improved by 70% to 3630 mg/L, and biomass yield also was improved by 60%. Chemical Oxygen Demand (COD) removal reached above 86% and hydraulic retention time was shortened from 96 to 72 hr. The mechanism analysis indicated that Mg2+ could promote the content of bacteriochlorophyll in photosynthesis because Mg2+ is the bacteriochlorophyll active center, and thus improved adenosine triphosphate (ATP) production. An increase of ATP production enhanced the conversion of organic matter in wastewater into PNSB cell materials (biomass yield) and COD removal, leading to more biomass production. With 10 mg/L Mg2+, bacteriochlorophyll content and ATP production were improved by 60% and 33% respectively.  相似文献   
6.
The rising concentration of carbon dioxide [CO2] in the atmosphere represents an increase in a growth-limiting resource for C3 crop species. Identification of lines or characteristics of lines which have superior yield at elevated [CO2] could aid in adaptation to this global change. While intraspecific variation in responses to elevated [CO2] has been found in several species, intraspecific differences in crop yield responses to elevated [CO2] under field conditions have seldom been documented. In this 4-year study, the responses of photosynthesis, growth, pod number, seed number and size, and seed yield to the elevation of [CO2] to 180 μmol mol−1 above the current ambient concentration were examined in four varieties of Phaseolus vulgaris in the field, using open-top chambers. There was a significant variety by [CO2] interaction for seed yield, with seed yield at elevated [CO2] ranging from 0.89 to 1.39 times that at ambient [CO2] (mean 1.17×) in the different varieties, when averaged over 4 years. The highest yielding variety at elevated [CO2] was not the highest yielding variety at ambient [CO2]. The varieties with the largest and smallest yield responses both had an indeterminate growth habit. Down-regulation of photosynthesis at elevated [CO2] only occurred in the two indeterminate varieties, and there was no significant correlation between the response of single leaf photosynthetic rate and the response of seed yield to elevated [CO2] among varieties, nor between the responses of stem mass and seed yield. The change in the number of pods at elevated [CO2] was the primary determinant of the response of seed yield. These results indicate that significant variation in the response of seed yield to elevated [CO2] under field conditions does exist among varieties of P. vulgaris, and that variation in the response of pod and seed number may be more important than variation in photosynthetic response.  相似文献   
7.
The North China Plain (NCP) is one of the most important regions for food production in China, with its agricultural system being significantly affected by the undergoing climate change and vulnerable with water stress. In this study, the Vegetation Interface Processes (VIP) model is used to evaluate crop yield, water consumption (ET), and water use efficiency (WUE) of a winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) double cropping system in the NCP from 1951 to 2006. Their responses to future climate scenarios of 21st century projected by the GCM (HadCM3) with Intergovernmental Panel on Climate Change Special Report on Emission Scenario (IPCC SRES) A2 and B1 emissions are investigated. The results show a rapid enhancement of crop yield in the past 56 years, accompanying with slight increment of ET and noticeable improvement of WUE. There exist spatial patterns of crop yield stemmed mainly from soil quality and irrigation facilities. For climate change impacts, it is found that winter wheat yield will significantly increase with the maximum increment in A2 occurring in 2070s with a value of 19%, whereas the maximum in B1 being 13% in 2060s. Its ET is slightly intensified, which is less than 6%, under both A2 and B1 scenarios, giving rise to the improvement of WUE by 10% and 7% under A2 and B1 scenarios, respectively. Comparatively, summer maize yield will gently decline by 15% for A2 and 12% for B1 scenario, respectively. Its ET is obviously increasing since 2050s with over 10% relative change, leading to a lower WUE with more than 25% relative change under both scenarios in 2090s. Therefore, possible adaptation countermeasures should be developed to mitigate the negative effects of climate change for the sustainable development of agro-ecosystems in the NCP.  相似文献   
8.
The present paper aims at investigating how changes in canopy structure and species physiology associated with the abandonment of mountain meadows and pastures affect their net photosynthesis. For this purpose, a multi-layer vegetation–atmosphere transfer (VAT) model is employed, which explicitly takes into account the structural and functional properties of the various canopy components and species. Three sites differing in land use are investigated, a meadow, a pasture and an abandoned area. Model simulations agree reasonably with measured canopy net photosynthetic rates, the meadow featuring the highest daily net photosynthesis, followed by the pasture and, finally, the abandoned area. A detailed process analysis suggests this ranking to be mainly due to bulk canopy physiology, which decreases from the meadow to the pasture and the abandoned area, reflecting species composition and species-specific photosynthetic capacities. Differences between the canopies with regard to canopy structure are found to be of minor importance. The amounts of green, photosynthetically active plant matter are too similar at the three sites to be a major source of variation in net photosynthesis. Large differences exist between the canopies with regard to the amount of photosynthetically inactive phytoelements. Even though a model analysis showed them to be potentially important, most of them are accumulated close to the ground surface, where they exert little influence on canopy net photosynthesis.  相似文献   
9.
Azizullah A  Richter P  Häder DP 《Chemosphere》2011,84(10):1392-1400
Synthetic detergents are among the commonly used chemicals in everyday life. Detergents, reaching aquatic environments through domestic and municipal wastewater, can cause many different effects in aquatic organisms. The present study was aimed at the toxicity evaluation of a commonly used laundry detergent, Ariel, using the freshwater flagellate Euglena gracilis as a biotest organism. Different parameters of the flagellate like motility, swimming velocity, cell shape, gravitactic orientation, photosynthesis and concentration of light harvesting pigments were used as end points for the toxicity assessment. No Observed Effect Concentration (NOEC) and EC50 values were calculated for the end point parameters at four different incubation times, i.e. 0, 6, 24 and 72 h. After 72 h incubation, swimming velocity of the cells was found to be the most sensitive parameter giving NOEC and EC50 values of 10.8 and 34 mg L−1, respectively. After 72 h exposure to the detergent, chlorophyll a and total carotenoids were significantly decreased in cultures treated with Ariel at concentrations of 50 mg L−1 and above while chlorophyll b significantly decreased at concentrations above 750 mg L−1. The maximum inhibitory effect on the quantum yield of photosystem II was observed after 24 h exposure and thereafter a recovery trend was observed. Motility, gravitaxis and cell shape were strongly impaired immediately upon exposure to the detergent, but with increasing exposure time these parameters showed acclimatization to the stress and thus the NOEC values obtained after 72 h were higher than those immediately after exposure.  相似文献   
10.
Epilithic mosses are characterized by insulation from substratum N and hence meet their N demand only by deposited N. This study investigated tissue C, total Chl and δ13C of epilithic mosses along 2 transects across Guiyang urban (SW China), aiming at testing their responses to N deposition. Tissue C and total Chl decreased from the urban to rural, but δ13Cmoss became less negative. With measurements of atmospheric CO2 and δ13CO2, elevated N deposition was inferred as a primary factor for changes in moss C and isotopic signatures. Correlations between total Chl, tissue C and N signals indicated a nutritional effect on C fixation of epilithic mosses, but the response of δ13Cmoss to N deposition could not be clearly differentiated from effects of other factors. Collective evidences suggest that C signals of epilithic mosses are useful proxies for N deposition but further works on physiological mechanisms are still needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号